Due to the swift growth of patent applications each year, information and multimedia retrieval approaches that facilitate patent exploration and retrieval are of utmost importance. Different types of visualizations (e.g., graphs, technical drawings) and perspectives (e.g., side view, perspective) are used to visualize details of innovations in patents. The classification of these images enables a more efficient search and allows for further analysis. So far, datasets for image type classification miss some important visualization types for patents. Furthermore, related work does not make use of recent deep learning approaches including transformers. In this paper, we adopt state-of-the-art deep learning methods for the classification of visualization types and perspectives in patent images. We extend the CLEF-IP dataset for image type classification in patents to ten classes and provide manual ground truth annotations. In addition, we derive a set of hierarchical classes from a dataset that provides weakly-labeled data for image perspectives. Experimental results have demonstrated the feasibility of the proposed approaches. Source code, models, and dataset will be made publicly available.
Differentiable digital signal processing (DDSP) techniques, including methods for audio synthesis, have gained attention in recent years and lend themselves to interpretability in the parameter space. However, current differentiable synthesis methods have not explicitly sought to model the transient portion of signals, which is important for percussive sounds. In this work, we present a unified synthesis framework aiming to address transient generation and percussive synthesis within a DDSP framework. To this end, we propose a model for percussive synthesis that builds on sinusoidal modeling synthesis and incorporates a modulated temporal convolutional network for transient generation. We use a modified sinusoidal peak picking algorithm to generate time-varying non-harmonic sinusoids and pair it with differentiable noise and transient encoders that are jointly trained to reconstruct drumset sounds. We compute a set of reconstruction metrics using a large dataset of acoustic and electronic percussion samples that show that our method leads to improved onset signal reconstruction for membranophone percussion instruments.
Every constructive model of computation (CMC) has an underlying composition mechanism for combining simple computation devices into more complex ones. Composition can be done by (explicitly or implicitly) defining control flow, data flow or any combination thereof. Control flow specifies the order in which individual computation devices are activated, whereas data flow defines how data is exchanged among them. Unfortunately, traditional CMCs either mix data and control or only consider one dimension explicitly, which makes it difficult to reason about data flow and control flow separately. Reasoning about these dimensions orthogonally is a crucial desideratum for optimisation, maintainability and verification purposes. In this paper, we introduce a novel model that explicitly treats data flow and control flow as separate dimensions, while providing modularity. As the model is rooted in category theory, it provides category-theoretic operations for compositionally constructing sequential or parallel composites. Compositionality entails that a composite exhibits the same properties as its respective constituents, including separation of concerns and modularity.
In a microservices-based system, reliability and availability are key components to guarantee the best-in-class experience for the consumers. One of the key advantages of microservices architecture is the ability to independently deploy services, providing maximum change flexibility. However, this introduces an extra complexity in managing the risk associated with every change: any mutation of a service might cause the whole system to fail. In this research, we would propose an algorithm to enable development teams to determine the risk associated with each change to any of the microservices in the system.
Hallucination in a foundation model (FM) refers to the generation of content that strays from factual reality or includes fabricated information. This survey paper provides an extensive overview of recent efforts that aim to identify, elucidate, and tackle the problem of hallucination, with a particular focus on ``Large'' Foundation Models (LFMs). The paper classifies various types of hallucination phenomena that are specific to LFMs and establishes evaluation criteria for assessing the extent of hallucination. It also examines existing strategies for mitigating hallucination in LFMs and discusses potential directions for future research in this area. Essentially, the paper offers a comprehensive examination of the challenges and solutions related to hallucination in LFMs.
This paper investigates the problem of class-incremental object detection for agricultural applications where a model needs to learn new plant species and diseases incrementally without forgetting the previously learned ones. We adapt two public datasets to include new categories over time, simulating a more realistic and dynamic scenario. We then compare three class-incremental learning methods that leverage different forms of knowledge distillation to mitigate catastrophic forgetting. Our experiments show that all three methods suffer from catastrophic forgetting, but the Dynamic Y-KD approach, which additionally uses a dynamic architecture that grows new branches to learn new tasks, outperforms ILOD and Faster-ILOD in most settings both on new and old classes. These results highlight the challenges and opportunities of continual object detection for agricultural applications. In particular, we hypothesize that the large intra-class and small inter-class variability that is typical of plant images exacerbate the difficulty of learning new categories without interfering with previous knowledge. We publicly release our code to encourage future work.
One of the things that need to change when it comes to machine translation is the models' ability to translate code-switching content, especially with the rise of social media and user-generated content. In this paper, we are proposing a way of training a single machine translation model that is able to translate monolingual sentences from one language to another, along with translating code-switched sentences to either language. This model can be considered a bilingual model in the human sense. For better use of parallel data, we generated synthetic code-switched (CSW) data along with an alignment loss on the encoder to align representations across languages. Using the WMT14 English-French (En-Fr) dataset, the trained model strongly outperforms bidirectional baselines on code-switched translation while maintaining quality for non-code-switched (monolingual) data.
Inspired by the diversity of biological neurons, quadratic artificial neurons can play an important role in deep learning models. The type of quadratic neurons of our interest replaces the inner-product operation in the conventional neuron with a quadratic function. Despite promising results so far achieved by networks of quadratic neurons, there are important issues not well addressed. Theoretically, the superior expressivity of a quadratic network over either a conventional network or a conventional network via quadratic activation is not fully elucidated, which makes the use of quadratic networks not well grounded. Practically, although a quadratic network can be trained via generic backpropagation, it can be subject to a higher risk of collapse than the conventional counterpart. To address these issues, we first apply the spline theory and a measure from algebraic geometry to give two theorems that demonstrate better model expressivity of a quadratic network than the conventional counterpart with or without quadratic activation. Then, we propose an effective training strategy referred to as ReLinear to stabilize the training process of a quadratic network, thereby unleashing the full potential in its associated machine learning tasks. Comprehensive experiments on popular datasets are performed to support our findings and confirm the performance of quadratic deep learning. We have shared our code in \url{//github.com/FengleiFan/ReLinear}.
Normalizing Flows (NFs) describe a class of models that express a complex target distribution as the composition of a series of bijective transformations over a simpler base distribution. By limiting the space of candidate transformations to diffeomorphisms, NFs enjoy efficient, exact sampling and density evaluation, enabling NFs to flexibly behave as both discriminative and generative models. Their restriction to diffeomorphisms, however, enforces that input, output and all intermediary spaces share the same dimension, limiting their ability to effectively represent target distributions with complex topologies. Additionally, in cases where the prior and target distributions are not homeomorphic, Normalizing Flows can leak mass outside of the support of the target. This survey covers a selection of recent works that combine aspects of other generative model classes, such as VAEs and score-based diffusion, and in doing so loosen the strict bijectivity constraints of NFs to achieve a balance of expressivity, training speed, sample efficiency and likelihood tractability.
To facilitate high quality interaction during the regular use of computing systems, it is essential that the user interface (UI) deliver content and components in an appropriate manner. Although extended reality (XR) is emerging as a new computing platform, we still have a limited understanding of how best to design and present interactive content to users in such immersive environments. Adaptive UIs offer a promising approach for optimal presentation in XR as the user's environment, tasks, capabilities, and preferences vary under changing context. In this position paper, we present a design framework for adapting various characteristics of content presented in XR. We frame these as five considerations that need to be taken into account for adaptive XR UIs: What?, How Much?, Where?, How?, and When?. With this framework, we review literature on UI design and adaptation to reflect on approaches that have been adopted or developed in the past towards identifying current gaps and challenges, and opportunities for applying such approaches in XR. Using our framework, future work could identify and develop novel computational approaches for achieving successful adaptive user interfaces in such immersive environments.
Deep neural networks have revolutionized many machine learning tasks in power systems, ranging from pattern recognition to signal processing. The data in these tasks is typically represented in Euclidean domains. Nevertheless, there is an increasing number of applications in power systems, where data are collected from non-Euclidean domains and represented as the graph-structured data with high dimensional features and interdependency among nodes. The complexity of graph-structured data has brought significant challenges to the existing deep neural networks defined in Euclidean domains. Recently, many studies on extending deep neural networks for graph-structured data in power systems have emerged. In this paper, a comprehensive overview of graph neural networks (GNNs) in power systems is proposed. Specifically, several classical paradigms of GNNs structures (e.g., graph convolutional networks, graph recurrent neural networks, graph attention networks, graph generative networks, spatial-temporal graph convolutional networks, and hybrid forms of GNNs) are summarized, and key applications in power systems such as fault diagnosis, power prediction, power flow calculation, and data generation are reviewed in detail. Furthermore, main issues and some research trends about the applications of GNNs in power systems are discussed.