Time-dependent protocols that perform irreversible logical operations, such as memory erasure, cost work and produce heat, placing bounds on the efficiency of computers. Here we use a prototypical computer model of a physical memory to show that it is possible to learn feedback-control protocols to do fast memory erasure without input of work or production of heat. These protocols, which are enacted by a neural-network ``demon'', do not violate the second law of thermodynamics because the demon generates more heat than the memory absorbs. The result is a form of nonlocal heat exchange in which one computation is rendered energetically favorable while a compensating one produces heat elsewhere, a tactic that could be used to rationally design the flow of energy within a computer.
We introduce ensembles of stochastic neural networks to approximate the Bayesian posterior, combining stochastic methods such as dropout with deep ensembles. The stochastic ensembles are formulated as families of distributions and trained to approximate the Bayesian posterior with variational inference. We implement stochastic ensembles based on Monte Carlo dropout, DropConnect and a novel non-parametric version of dropout and evaluate them on a toy problem and CIFAR image classification. For both tasks, we test the quality of the posteriors directly against Hamiltonian Monte Carlo simulations. Our results show that stochastic ensembles provide more accurate posterior estimates than other popular baselines for Bayesian inference.
The increasing availability of temporal data poses a challenge to time-series and signal-processing domains due to its high numerosity and complexity. Symbolic representation outperforms raw data in a variety of engineering applications due to its storage efficiency, reduced numerosity, and noise reduction. The most recent symbolic aggregate approximation technique called ABBA demonstrates outstanding performance in preserving essential shape information of time series and enhancing the downstream applications. However, ABBA cannot handle multiple time series with consistent symbols, i.e., the same symbols from distinct time series are not identical. Also, working with appropriate ABBA digitization involves the tedious task of tuning the hyperparameters, such as the number of symbols or tolerance. Therefore, we present a joint symbolic aggregate approximation that has symbolic consistency, and show how the hyperparameter of digitization can itself be optimized alongside the compression tolerance ahead of time. Besides, we propose a novel computing paradigm that enables parallel computing of symbolic approximation. The extensive experiments demonstrate its superb performance and outstanding speed regarding symbolic approximation and reconstruction.
Survival analysis can sometimes involve individuals who will not experience the event of interest, forming what is known as the cured group. Identifying such individuals is not always possible beforehand, as they provide only right-censored data. Ignoring the presence of the cured group can introduce bias in the final model. This paper presents a method for estimating a semiparametric additive hazards model that accounts for the cured fraction. Unlike regression coefficients in a hazard ratio model, those in an additive hazard model measure hazard differences. The proposed method uses a primal-dual interior point algorithm to obtain constrained maximum penalized likelihood estimates of the model parameters, including the regression coefficients and the baseline hazard, subject to certain non-negativity constraints.
As a pivotal approach in machine learning and data science, manifold learning aims to uncover the intrinsic low-dimensional structure within complex nonlinear manifolds in high-dimensional space. By exploiting the manifold hypothesis, various techniques for nonlinear dimension reduction have been developed to facilitate visualization, classification, clustering, and gaining key insights. Although existing manifold learning methods have achieved remarkable successes, they still suffer from extensive distortions incurred in the global structure, which hinders the understanding of underlying patterns. Scalability issues also limit their applicability for handling large-scale data. Here, we propose a scalable manifold learning (scML) method that can manipulate large-scale and high-dimensional data in an efficient manner. It starts by seeking a set of landmarks to construct the low-dimensional skeleton of the entire data and then incorporates the non-landmarks into the landmark space based on the constrained locally linear embedding (CLLE). We empirically validated the effectiveness of scML on synthetic datasets and real-world benchmarks of different types, and applied it to analyze the single-cell transcriptomics and detect anomalies in electrocardiogram (ECG) signals. scML scales well with increasing data sizes and exhibits promising performance in preserving the global structure. The experiments demonstrate notable robustness in embedding quality as the sample rate decreases.
The dominant paradigm for end-to-end robot learning focuses on optimizing task-specific objectives that solve a single robotic problem such as picking up an object or reaching a target position. However, recent work on high-capacity models in robotics has shown promise toward being trained on large collections of diverse and task-agnostic datasets of video demonstrations. These models have shown impressive levels of generalization to unseen circumstances, especially as the amount of data and the model complexity scale. Surgical robot systems that learn from data have struggled to advance as quickly as other fields of robot learning for a few reasons: (1) there is a lack of existing large-scale open-source data to train models, (2) it is challenging to model the soft-body deformations that these robots work with during surgery because simulation cannot match the physical and visual complexity of biological tissue, and (3) surgical robots risk harming patients when tested in clinical trials and require more extensive safety measures. This perspective article aims to provide a path toward increasing robot autonomy in robot-assisted surgery through the development of a multi-modal, multi-task, vision-language-action model for surgical robots. Ultimately, we argue that surgical robots are uniquely positioned to benefit from general-purpose models and provide three guiding actions toward increased autonomy in robot-assisted surgery.
Many physical problems involving heterogeneous spatial scales, such as the flow through fractured porous media, the study of fiber-reinforced materials, or the modeling of the small circulation in living tissues -- just to mention a few examples -- can be described as coupled partial differential equations defined in domains of heterogeneous dimensions that are embedded into each other. This formulation is a consequence of geometric model reduction techniques that transform the original problems defined in complex three-dimensional domains into more tractable ones. The definition and the approximation of coupling operators suitable for this class of problems is still a challenge. We develop a general mathematical framework for the analysis and the approximation of partial differential equations coupled by non-matching constraints across different dimensions, focusing on their enforcement using Lagrange multipliers. In this context, we address in abstract and general terms the well-posedness, stability, and robustness of the problem with respect to the smallest characteristic length of the embedded domain. We also address the numerical approximation of the problem and we discuss the inf-sup stability of the proposed numerical scheme for some representative configuration of the embedded domain. The main message of this work is twofold: from the standpoint of the theory of mixed-dimensional problems, we provide general and abstract mathematical tools to formulate coupled problems across dimensions. From the practical standpoint of the numerical approximation, we show the interplay between the mesh characteristic size, the dimension of the Lagrange multiplier space, and the size of the inclusion in representative configurations interesting for applications. The latter analysis is complemented with illustrative numerical examples.
In this paper we consider a nonlinear poroelasticity model that describes the quasi-static mechanical behaviour of a fluid-saturated porous medium whose permeability depends on the divergence of the displacement. Such nonlinear models are typically used to study biological structures like tissues, organs, cartilage and bones, which are known for a nonlinear dependence of their permeability/hydraulic conductivity on solid dilation. We formulate (extend to the present situation) one of the most popular splitting schemes, namely the fixed-stress split method for the iterative solution of the coupled problem. The method is proven to converge linearly for sufficiently small time steps under standard assumptions. The error contraction factor then is strictly less than one, independent of the Lam\'{e} parameters, Biot and storage coefficients if the hydraulic conductivity is a strictly positive, bounded and Lipschitz-continuous function.
The HTTPS protocol has enforced a higher level of robustness to several attacks; however, it is not easy to set up the required certificates on intranets, nor is it effective in the case the server confidentiality is not reliable, as in the case of cloud services, or it could be compromised. A simple method is proposed to encrypt the data on the client side, using Web Assembly. It never transfers data to the server as clear text. Searching fields in the server is made possible by an encoding scheme that ensures a stable prefix correspondence between ciphertext and plaintext. The method has been developed for a semantic medical database, and allows accessing personal data using an additional password while maintaining non-sensitive information in clear form. Web Assembly has been chosen to guarantee the fast and efficient execution of encrypting/decrypting operations and because of its characteristic of producing modules that are very robust against reverse engineering. The code is available at //github.com/mfalda/client-encdec.
Convergence of classical parallel iterations is detected by performing a reduction operation at each iteration in order to compute a residual error relative to a potential solution vector. To efficiently run asynchronous iterations, blocking communication requests are avoided, which makes it hard to isolate and handle any global vector. While some termination protocols were proposed for asynchronous iterations, only very few of them are based on global residual computation and guarantee effective convergence. But the most effective and efficient existing solutions feature two reduction operations, which constitutes an important factor of termination delay. In this paper, we present new, non-intrusive, protocols to compute a residual error under asynchronous iterations, requiring only one reduction operation. Various communication models show that some heuristics can even be introduced and formally evaluated. Extensive experiments with up to 5600 processor cores confirm the practical effectiveness and efficiency of our approach.
Recent advances in 3D fully convolutional networks (FCN) have made it feasible to produce dense voxel-wise predictions of volumetric images. In this work, we show that a multi-class 3D FCN trained on manually labeled CT scans of several anatomical structures (ranging from the large organs to thin vessels) can achieve competitive segmentation results, while avoiding the need for handcrafting features or training class-specific models. To this end, we propose a two-stage, coarse-to-fine approach that will first use a 3D FCN to roughly define a candidate region, which will then be used as input to a second 3D FCN. This reduces the number of voxels the second FCN has to classify to ~10% and allows it to focus on more detailed segmentation of the organs and vessels. We utilize training and validation sets consisting of 331 clinical CT images and test our models on a completely unseen data collection acquired at a different hospital that includes 150 CT scans, targeting three anatomical organs (liver, spleen, and pancreas). In challenging organs such as the pancreas, our cascaded approach improves the mean Dice score from 68.5 to 82.2%, achieving the highest reported average score on this dataset. We compare with a 2D FCN method on a separate dataset of 240 CT scans with 18 classes and achieve a significantly higher performance in small organs and vessels. Furthermore, we explore fine-tuning our models to different datasets. Our experiments illustrate the promise and robustness of current 3D FCN based semantic segmentation of medical images, achieving state-of-the-art results. Our code and trained models are available for download: //github.com/holgerroth/3Dunet_abdomen_cascade.