亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

$\operatorname{Holant}^*(f)$ denotes a class of counting problems specified by a constraint function $f$. We prove complexity dichotomy theorems for $\operatorname{Holant}^*(f)$ in two settings: (1) $f$ is any arity-3 real-valued function on input of domain size 3. (2) $f$ is any arity-3 $\{0,1\}$-valued function on input of domain size 4.

相關內容

Exhibiting an explicit Boolean function with a large high-order nonlinearity is an important problem in cryptography, coding theory, and computational complexity. We prove lower bounds on the second-order, third-order, and higher-order nonlinearities of some trace monomial Boolean functions. We prove lower bounds on the second-order nonlinearities of functions $\mathrm{tr}_n(x^7)$ and $\mathrm{tr}_n(x^{2^r+3})$ where $n=2r$. Among all trace monomials, our bounds match the best second-order nonlinearity lower bounds by \cite{Car08} and \cite{YT20} for odd and even $n$ respectively. We prove a lower bound on the third-order nonlinearity for functions $\mathrm{tr}_n(x^{15})$, which is the best third-order nonlinearity lower bound. For any $r$, we prove that the $r$-th order nonlinearity of $\mathrm{tr}_n(x^{2^{r+1}-1})$ is at least $2^{n-1}-2^{(1-2^{-r})n+\frac{r}{2^{r-1}}-1}- O(2^{\frac{n}{2}})$. For $r \ll \log_2 n$, this is the best lower bound among all explicit functions.

We show that feasibility of the $t^\text{th}$ level of the Lasserre semidefinite programming hierarchy for graph isomorphism can be expressed as a homomorphism indistinguishability relation. In other words, we define a class $\mathcal{L}_t$ of graphs such that graphs $G$ and $H$ are not distinguished by the $t^\text{th}$ level of the Lasserre hierarchy if and only if they admit the same number of homomorphisms from any graph in $\mathcal{L}_t$. By analysing the treewidth of graphs in $\mathcal{L}_t$ we prove that the $3t^\text{th}$ level of Sherali--Adams linear programming hierarchy is as strong as the $t^\text{th}$ level of Lasserre. Moreover, we show that this is best possible in the sense that $3t$ cannot be lowered to $3t-1$ for any $t$. The same result holds for the Lasserre hierarchy with non-negativity constraints, which we similarly characterise in terms of homomorphism indistinguishability over a family $\mathcal{L}_t^+$ of graphs. Additionally, we give characterisations of level-$t$ Lasserre with non-negativity constraints in terms of logical equivalence and via a graph colouring algorithm akin to the Weisfeiler--Leman algorithm. This provides a polynomial time algorithm for determining if two given graphs are distinguished by the $t^\text{th}$ level of the Lasserre hierarchy with non-negativity constraints.

Quantum multiplication is a fundamental operation in quantum computing. Most existing quantum multipliers require $O(n)$ qubits to multiply two $n$-bit integer numbers, limiting their applicability to multiply large integer numbers using near-term quantum computers. This paper proposes a new approach, the Quantum Multiplier Based on Exponent Adder (QMbead), which addresses this issue by requiring only $log_2(n)$ qubits to multiply two $n$-bit integer numbers. QMbead uses a so-called exponent encoding to represent the two multiplicands as two superposition states, respectively, and then employs a quantum adder to obtain the sum of these two superposition states, and subsequently measures the outputs of the quantum adder to calculate the product of the multiplicands. The paper presents two types of quantum adders based on the quantum Fourier transform (QFT) for use in QMbead. The circuit depth of QMbead is determined by the chosen quantum adder, being $O(log_2^2 n)$ when using the two QFT-based adders. The multiplicand can be either an integer or a decimal number. QMbead has been implemented on quantum simulators to compute products with a bit length of up to 273 bits using only 17 qubits. This establishes QMbead as an efficient solution for multiplying large integer or decimal numbers with many bits.

We introduce linear probing hashing schemes that construct a hash table of size $n$, with constant load factor $\alpha$, on which the worst-case unsuccessful search time is asymptotically almost surely $O(\log \log n)$. The schemes employ two linear probe sequences to find empty cells for the keys. Matching lower bounds on the maximum cluster size produced by any algorithm that uses two linear probe sequences are obtained as well.

We consider extensions of the Shannon relative entropy, referred to as $f$-divergences.Three classical related computational problems are typically associated with these divergences: (a) estimation from moments, (b) computing normalizing integrals, and (c) variational inference in probabilistic models. These problems are related to one another through convex duality, and for all them, there are many applications throughout data science, and we aim for computationally tractable approximation algorithms that preserve properties of the original problem such as potential convexity or monotonicity. In order to achieve this, we derive a sequence of convex relaxations for computing these divergences from non-centered covariance matrices associated with a given feature vector: starting from the typically non-tractable optimal lower-bound, we consider an additional relaxation based on ``sums-of-squares'', which is is now computable in polynomial time as a semidefinite program. We also provide computationally more efficient relaxations based on spectral information divergences from quantum information theory. For all of the tasks above, beyond proposing new relaxations, we derive tractable convex optimization algorithms, and we present illustrations on multivariate trigonometric polynomials and functions on the Boolean hypercube.

Given $n$-vertex simple graphs $X$ and $Y$, the friends-and-strangers graph $\mathsf{FS}(X, Y)$ has as its vertices all $n!$ bijections from $V(X)$ to $V(Y)$, where two bijections are adjacent if and only if they differ on two adjacent elements of $V(X)$ whose mappings are adjacent in $Y$. We consider the setting where $X$ and $Y$ are both edge-subgraphs of $K_{r,r}$: due to a parity obstruction, $\mathsf{FS}(X,Y)$ is always disconnected in this setting. Sharpening a result of Bangachev, we show that if $X$ and $Y$ respectively have minimum degrees $\delta(X)$ and $\delta(Y)$ and they satisfy $\delta(X) + \delta(Y) \geq \lfloor 3r/2 \rfloor + 1$, then $\mathsf{FS}(X,Y)$ has exactly two connected components. This proves that the cutoff for $\mathsf{FS}(X,Y)$ to avoid isolated vertices is equal to the cutoff for $\mathsf{FS}(X,Y)$ to have exactly two connected components. We also consider a probabilistic setup in which we fix $Y$ to be $K_{r,r}$, but randomly generate $X$ by including each edge in $K_{r,r}$ independently with probability $p$. Invoking a result of Zhu, we exhibit a phase transition phenomenon with threshold function $(\log r)/r$: below the threshold, $\mathsf{FS}(X,Y)$ has more than two connected components with high probability, while above the threshold, $\mathsf{FS}(X,Y)$ has exactly two connected components with high probability. Altogether, our results settle a conjecture and completely answer two problems of Alon, Defant, and Kravitz.

The problem of recovering a signal $\boldsymbol{x} \in \mathbb{R}^n$ from a quadratic system $\{y_i=\boldsymbol{x}^\top\boldsymbol{A}_i\boldsymbol{x},\ i=1,\ldots,m\}$ with full-rank matrices $\boldsymbol{A}_i$ frequently arises in applications such as unassigned distance geometry and sub-wavelength imaging. With i.i.d. standard Gaussian matrices $\boldsymbol{A}_i$, this paper addresses the high-dimensional case where $m\ll n$ by incorporating prior knowledge of $\boldsymbol{x}$. First, we consider a $k$-sparse $\boldsymbol{x}$ and introduce the thresholded Wirtinger flow (TWF) algorithm that does not require the sparsity level $k$. TWF comprises two steps: the spectral initialization that identifies a point sufficiently close to $\boldsymbol{x}$ (up to a sign flip) when $m=O(k^2\log n)$, and the thresholded gradient descent (with a good initialization) that produces a sequence linearly converging to $\boldsymbol{x}$ with $m=O(k\log n)$ measurements. Second, we explore the generative prior, assuming that $\boldsymbol{x}$ lies in the range of an $L$-Lipschitz continuous generative model with $k$-dimensional inputs in an $\ell_2$-ball of radius $r$. We develop the projected gradient descent (PGD) algorithm that also comprises two steps: the projected power method that provides an initial vector with $O\big(\sqrt{\frac{k \log L}{m}}\big)$ $\ell_2$-error given $m=O(k\log(Lnr))$ measurements, and the projected gradient descent that refines the $\ell_2$-error to $O(\delta)$ at a geometric rate when $m=O(k\log\frac{Lrn}{\delta^2})$. Experimental results corroborate our theoretical findings and show that: (i) our approach for the sparse case notably outperforms the existing provable algorithm sparse power factorization; (ii) leveraging the generative prior allows for precise image recovery in the MNIST dataset from a small number of quadratic measurements.

In Linear Logic ($\mathsf{LL}$), the exponential modality $!$ brings forth a distinction between non-linear proofs and linear proofs, where linear means using an argument exactly once. Differential Linear Logic ($\mathsf{DiLL}$) is an extension of Linear Logic which includes additional rules for $!$ which encode differentiation and the ability of linearizing proofs. On the other hand, Graded Linear Logic ($\mathsf{GLL}$) is a variation of Linear Logic in such a way that $!$ is now indexed over a semiring $R$. This $R$-grading allows for non-linear proofs of degree $r \in R$, such that the linear proofs are of degree $1 \in R$. There has been recent interest in combining these two variations of $\mathsf{LL}$ together and developing Graded Differential Linear Logic ($\mathsf{GDiLL}$). In this paper we present a sequent calculus for $\mathsf{GDiLL}$, as well as introduce its categorical semantics, which we call graded differential categories, using both coderelictions and deriving transformations. We prove that symmetric powers always give graded differential categories, and provide other examples of graded differential categories. We also discuss graded versions of (monoidal) coalgebra modalities, additive bialgebra modalities, and the Seely isomorphisms, as well as their implementations in the sequent calculus of $\mathsf{GDiLL}$.

We propose a new algorithm for variance reduction when estimating $f(X_T)$ where $X$ is the solution to some stochastic differential equation and $f$ is a test function. The new estimator is $(f(X^1_T) + f(X^2_T))/2$, where $X^1$ and $X^2$ have same marginal law as $X$ but are pathwise correlated so that to reduce the variance. The optimal correlation function $\rho$ is approximated by a deep neural network and is calibrated along the trajectories of $(X^1, X^2)$ by policy gradient and reinforcement learning techniques. Finding an optimal coupling given marginal laws has links with maximum optimal transport.

For a fixed finite set of finite tournaments ${\mathcal F}$, the ${\mathcal F}$-free orientation problem asks whether a given finite undirected graph $G$ has an $\mathcal F$-free orientation, i.e., whether the edges of $G$ can be oriented so that the resulting digraph does not embed any of the tournaments from ${\mathcal F}$. We prove that for every ${\mathcal F}$, this problem is in P or NP-complete. Our proof reduces the classification task to a complete complexity classification of the orientation completion problem for ${\mathcal F}$, which is the variant of the problem above where the input is a directed graph instead of an undirected graph, introduced by Bang-Jensen, Huang, and Zhu (2017). Our proof uses results from the theory of constraint satisfaction, and a result of Agarwal and Kompatscher (2018) about infinite permutation groups and transformation monoids.

北京阿比特科技有限公司