亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We develop a flexible online version of the permutation test. This allows us to test exchangeability as the data is arriving, where we can choose to stop or continue without invalidating the size of the test. Our methods generalize beyond exchangeability to other forms of invariance under a compact group. Our approach relies on constructing an $e$-process that is the running product of multiple conditional $e$-values. To construct $e$-values, we first develop an essentially complete class of admissible $e$-values in which one can flexibly `plug in' almost any desired test statistic. To make the $e$-values conditional, we explore the intersection between the concepts of conditional invariance and sequential invariance, and find that the appropriate conditional distribution can be captured by a compact subgroup. To find powerful $e$-values for given alternatives, we develop the theory of likelihood ratios for testing group invariance yielding new optimality results for group invariance tests. These statistics turn out to exist in three different flavors, depending on the space on which we specify our alternative. We apply these statistics to test against a Gaussian location shift, which yields connections to the $t$-test when testing sphericity, connections to the softmax function and its temperature when testing exchangeability, and yields an improved version of a known $e$-value for testing sign-symmetry. Moreover, we introduce an impatience parameter that allows users to obtain more power now in exchange for less power in the long run.

相關內容

Flight Trajectory Prediction (FTP) is an essential task in Air Traffic Control (ATC), which can assist air traffic controllers in managing airspace more safely and efficiently. Existing approaches generally perform multi-horizon FTP tasks in an autoregressive manner, thereby suffering from error accumulation and low-efficiency problems. In this paper, a novel framework, called FlightBERT++, is proposed to i) forecast multi-horizon flight trajectories directly in a non-autoregressive way, and ii) improve the limitation of the binary encoding (BE) representation in the FlightBERT. Specifically, the FlightBERT++ is implemented by a generalized encoder-decoder architecture, in which the encoder learns the temporal-spatial patterns from historical observations and the decoder predicts the flight status for the future horizons. Compared with conventional architecture, an innovative horizon-aware contexts generator is dedicatedly designed to consider the prior horizon information, which further enables non-autoregressive multi-horizon prediction. Moreover, a differential prompted decoder is proposed to enhance the capability of the differential predictions by leveraging the stationarity of the differential sequence. The experimental results on a real-world dataset demonstrated that the FlightBERT++ outperformed the competitive baselines in both FTP performance and computational efficiency.

In this paper we address how complex social communities emerge from local decisions by individuals with limited attention and knowledge. This problem is critical; if we understand community formation mechanisms, it may be possible to intervene to improve social welfare. We propose an interpretable, novel model for attributed community formation driven by resource-bounded individuals' strategic, selfish behavior. In our stylized model, attributed individuals act strategically in two dimensions: attribute and network structure. Agents are endowed with limited attention, and communication costs limit the number of active connections. In each time step, each agent proposes a new friendship. Agents then accept proposals, decline proposals, or remove friends, consistent with their strategy to maximize payoff. We identify criteria (number of stable triads) for convergence to some community structure and prove that our community formation model converges to a stable network. Ablations justify the ecological validity of our model and show that each aspect of the model is essential. Our empirical results on a physical world microfinance community demonstrate excellent model fits compared to baseline models.

Recommender systems are important and powerful tools for various personalized services. Traditionally, these systems use data mining and machine learning techniques to make recommendations based on correlations found in the data. However, relying solely on correlation without considering the underlying causal mechanism may lead to various practical issues such as fairness, explainability, robustness, bias, echo chamber and controllability problems. Therefore, researchers in related area have begun incorporating causality into recommendation systems to address these issues. In this survey, we review the existing literature on causal inference in recommender systems. We discuss the fundamental concepts of both recommender systems and causal inference as well as their relationship, and review the existing work on causal methods for different problems in recommender systems. Finally, we discuss open problems and future directions in the field of causal inference for recommendations.

With the advances of data-driven machine learning research, a wide variety of prediction problems have been tackled. It has become critical to explore how machine learning and specifically deep learning methods can be exploited to analyse healthcare data. A major limitation of existing methods has been the focus on grid-like data; however, the structure of physiological recordings are often irregular and unordered which makes it difficult to conceptualise them as a matrix. As such, graph neural networks have attracted significant attention by exploiting implicit information that resides in a biological system, with interactive nodes connected by edges whose weights can be either temporal associations or anatomical junctions. In this survey, we thoroughly review the different types of graph architectures and their applications in healthcare. We provide an overview of these methods in a systematic manner, organized by their domain of application including functional connectivity, anatomical structure and electrical-based analysis. We also outline the limitations of existing techniques and discuss potential directions for future research.

Click-through rate (CTR) prediction plays a critical role in recommender systems and online advertising. The data used in these applications are multi-field categorical data, where each feature belongs to one field. Field information is proved to be important and there are several works considering fields in their models. In this paper, we proposed a novel approach to model the field information effectively and efficiently. The proposed approach is a direct improvement of FwFM, and is named as Field-matrixed Factorization Machines (FmFM, or $FM^2$). We also proposed a new explanation of FM and FwFM within the FmFM framework, and compared it with the FFM. Besides pruning the cross terms, our model supports field-specific variable dimensions of embedding vectors, which acts as soft pruning. We also proposed an efficient way to minimize the dimension while keeping the model performance. The FmFM model can also be optimized further by caching the intermediate vectors, and it only takes thousands of floating-point operations (FLOPs) to make a prediction. Our experiment results show that it can out-perform the FFM, which is more complex. The FmFM model's performance is also comparable to DNN models which require much more FLOPs in runtime.

Graph convolution networks (GCN) are increasingly popular in many applications, yet remain notoriously hard to train over large graph datasets. They need to compute node representations recursively from their neighbors. Current GCN training algorithms suffer from either high computational costs that grow exponentially with the number of layers, or high memory usage for loading the entire graph and node embeddings. In this paper, we propose a novel efficient layer-wise training framework for GCN (L-GCN), that disentangles feature aggregation and feature transformation during training, hence greatly reducing time and memory complexities. We present theoretical analysis for L-GCN under the graph isomorphism framework, that L-GCN leads to as powerful GCNs as the more costly conventional training algorithm does, under mild conditions. We further propose L^2-GCN, which learns a controller for each layer that can automatically adjust the training epochs per layer in L-GCN. Experiments show that L-GCN is faster than state-of-the-arts by at least an order of magnitude, with a consistent of memory usage not dependent on dataset size, while maintaining comparable prediction performance. With the learned controller, L^2-GCN can further cut the training time in half. Our codes are available at //github.com/Shen-Lab/L2-GCN.

Many tasks in natural language processing can be viewed as multi-label classification problems. However, most of the existing models are trained with the standard cross-entropy loss function and use a fixed prediction policy (e.g., a threshold of 0.5) for all the labels, which completely ignores the complexity and dependencies among different labels. In this paper, we propose a meta-learning method to capture these complex label dependencies. More specifically, our method utilizes a meta-learner to jointly learn the training policies and prediction policies for different labels. The training policies are then used to train the classifier with the cross-entropy loss function, and the prediction policies are further implemented for prediction. Experimental results on fine-grained entity typing and text classification demonstrate that our proposed method can obtain more accurate multi-label classification results.

When labeled training data is scarce, a promising data augmentation approach is to generate visual features of unknown classes using their attributes. To learn the class conditional distribution of CNN features, these models rely on pairs of image features and class attributes. Hence, they can not make use of the abundance of unlabeled data samples. In this paper, we tackle any-shot learning problems i.e. zero-shot and few-shot, in a unified feature generating framework that operates in both inductive and transductive learning settings. We develop a conditional generative model that combines the strength of VAE and GANs and in addition, via an unconditional discriminator, learns the marginal feature distribution of unlabeled images. We empirically show that our model learns highly discriminative CNN features for five datasets, i.e. CUB, SUN, AWA and ImageNet, and establish a new state-of-the-art in any-shot learning, i.e. inductive and transductive (generalized) zero- and few-shot learning settings. We also demonstrate that our learned features are interpretable: we visualize them by inverting them back to the pixel space and we explain them by generating textual arguments of why they are associated with a certain label.

Object tracking is the cornerstone of many visual analytics systems. While considerable progress has been made in this area in recent years, robust, efficient, and accurate tracking in real-world video remains a challenge. In this paper, we present a hybrid tracker that leverages motion information from the compressed video stream and a general-purpose semantic object detector acting on decoded frames to construct a fast and efficient tracking engine suitable for a number of visual analytics applications. The proposed approach is compared with several well-known recent trackers on the OTB tracking dataset. The results indicate advantages of the proposed method in terms of speed and/or accuracy. Another advantage of the proposed method over most existing trackers is its simplicity and deployment efficiency, which stems from the fact that it reuses and re-purposes the resources and information that may already exist in the system for other reasons.

Most existing works in visual question answering (VQA) are dedicated to improving the accuracy of predicted answers, while disregarding the explanations. We argue that the explanation for an answer is of the same or even more importance compared with the answer itself, since it makes the question and answering process more understandable and traceable. To this end, we propose a new task of VQA-E (VQA with Explanation), where the computational models are required to generate an explanation with the predicted answer. We first construct a new dataset, and then frame the VQA-E problem in a multi-task learning architecture. Our VQA-E dataset is automatically derived from the VQA v2 dataset by intelligently exploiting the available captions. We have conducted a user study to validate the quality of explanations synthesized by our method. We quantitatively show that the additional supervision from explanations can not only produce insightful textual sentences to justify the answers, but also improve the performance of answer prediction. Our model outperforms the state-of-the-art methods by a clear margin on the VQA v2 dataset.

北京阿比特科技有限公司