The solution of linear inverse problems arising, for example, in signal and image processing is a challenging problem since the ill-conditioning amplifies, in the solution, the noise present in the data. Recently introduced algorithms based on deep learning overwhelm the more traditional model-based approaches in performance, but they typically suffer from instability with respect to data perturbation. In this paper, we theoretically analyze the trade-off between stability and accuracy of neural networks, when used to solve linear imaging inverse problems for not under-determined cases. Moreover, we propose different supervised and unsupervised solutions to increase the network stability and maintain a good accuracy, by means of regularization properties inherited from a model-based iterative scheme during the network training and pre-processing stabilizing operator in the neural networks. Extensive numerical experiments on image deblurring confirm the theoretical results and the effectiveness of the proposed deep learning-based approaches to handle noise on the data.
Intelligent tutoring systems optimize the selection and timing of learning materials to enhance understanding and long-term retention. This requires estimates of both the learner's progress (''knowledge tracing''; KT), and the prerequisite structure of the learning domain (''knowledge mapping''). While recent deep learning models achieve high KT accuracy, they do so at the expense of the interpretability of psychologically-inspired models. In this work, we present a solution to this trade-off. PSI-KT is a hierarchical generative approach that explicitly models how both individual cognitive traits and the prerequisite structure of knowledge influence learning dynamics, thus achieving interpretability by design. Moreover, by using scalable Bayesian inference, PSI-KT targets the real-world need for efficient personalization even with a growing body of learners and learning histories. Evaluated on three datasets from online learning platforms, PSI-KT achieves superior multi-step predictive accuracy and scalable inference in continual-learning settings, all while providing interpretable representations of learner-specific traits and the prerequisite structure of knowledge that causally supports learning. In sum, predictive, scalable and interpretable knowledge tracing with solid knowledge mapping lays a key foundation for effective personalized learning to make education accessible to a broad, global audience.
We use fixed point theory to analyze nonnegative neural networks, which we define as neural networks that map nonnegative vectors to nonnegative vectors. We first show that nonnegative neural networks with nonnegative weights and biases can be recognized as monotonic and (weakly) scalable mappings within the framework of nonlinear Perron-Frobenius theory. This fact enables us to provide conditions for the existence of fixed points of nonnegative neural networks having inputs and outputs of the same dimension, and these conditions are weaker than those recently obtained using arguments in convex analysis. Furthermore, we prove that the shape of the fixed point set of nonnegative neural networks with nonnegative weights and biases is an interval, which under mild conditions degenerates to a point. These results are then used to obtain the existence of fixed points of more general nonnegative neural networks. From a practical perspective, our results contribute to the understanding of the behavior of autoencoders, and we also offer valuable mathematical machinery for future developments in deep equilibrium models.
Group imbalance has been a known problem in empirical risk minimization (ERM), where the achieved high average accuracy is accompanied by low accuracy in a minority group. Despite algorithmic efforts to improve the minority group accuracy, a theoretical generalization analysis of ERM on individual groups remains elusive. By formulating the group imbalance problem with the Gaussian Mixture Model, this paper quantifies the impact of individual groups on the sample complexity, the convergence rate, and the average and group-level testing performance. Although our theoretical framework is centered on binary classification using a one-hidden-layer neural network, to the best of our knowledge, we provide the first theoretical analysis of the group-level generalization of ERM in addition to the commonly studied average generalization performance. Sample insights of our theoretical results include that when all group-level co-variance is in the medium regime and all mean are close to zero, the learning performance is most desirable in the sense of a small sample complexity, a fast training rate, and a high average and group-level testing accuracy. Moreover, we show that increasing the fraction of the minority group in the training data does not necessarily improve the generalization performance of the minority group. Our theoretical results are validated on both synthetic and empirical datasets, such as CelebA and CIFAR-10 in image classification.
The elastic energy of a bending-resistant interface depends both on its geometry and its material composition. We consider such a heterogeneous interface in the plane, modeled by a curve equipped with an additional density function. The resulting energy captures the complex interplay between curvature and density effects, resembling the Canham-Helfrich functional. We describe the curve by its inclination angle, so that the equilibrium equations reduce to an elliptic system of second order. After a brief variational discussion, we investigate the associated nonlocal $L^2$-gradient flow evolution, a coupled quasilinear parabolic problem. We analyze the (non)preservation of quantities such as convexity, positivity, and symmetry, as well as the asymptotic behavior of the system. The results are illustrated by numerical experiments.
Recent advances in neuroimaging have enabled studies in functional connectivity (FC) of human brain, alongside investigation of the neuronal basis of cognition. One important FC study is the representation of vision in human brain. The release of publicly available dataset BOLD5000 has made it possible to study the brain dynamics during visual tasks in greater detail. In this paper, a comprehensive analysis of fMRI time series (TS) has been performed to explore different types of visual brain networks (VBN). The novelty of this work lies in (1) constructing VBN with consistently significant direct connectivity using both marginal and partial correlation, which is further analyzed using graph theoretic measures, (2) classification of VBNs as formed by image complexity-specific TS, using graphical features. In image complexity-specific VBN classification, XGBoost yields average accuracy in the range of 86.5% to 91.5% for positively correlated VBN, which is 2% greater than that using negative correlation. This result not only reflects the distinguishing graphical characteristics of each image complexity-specific VBN, but also highlights the importance of studying both positively correlated and negatively correlated VBN to understand the how differently brain functions while viewing different complexities of real-world images.
When complex Bayesian models exhibit implausible behaviour, one solution is to assemble available information into an informative prior. Challenges arise as prior information is often only available for the observable quantity, or some model-derived marginal quantity, rather than directly pertaining to the natural parameters in our model. We propose a method for translating available prior information, in the form of an elicited distribution for the observable or model-derived marginal quantity, into an informative joint prior. Our approach proceeds given a parametric class of prior distributions with as yet undetermined hyperparameters, and minimises the difference between the supplied elicited distribution and corresponding prior predictive distribution. We employ a global, multi-stage Bayesian optimisation procedure to locate optimal values for the hyperparameters. Three examples illustrate our approach: a cure-fraction survival model, where censoring implies that the observable quantity is a priori a mixed discrete/continuous quantity; a setting in which prior information pertains to $R^{2}$ -- a model-derived quantity; and a nonlinear regression model.
In operations research (OR), predictive models often encounter out-of-distribution (OOD) scenarios where the data distribution differs from the training data distribution. In recent years, neural networks (NNs) are gaining traction in OR for their exceptional performance in fields such as image classification. However, NNs tend to make confident yet incorrect predictions when confronted with OOD data. Uncertainty estimation offers a solution to overconfident models, communicating when the output should (not) be trusted. Hence, reliable uncertainty quantification in NNs is crucial in the OR domain. Deep ensembles, composed of multiple independent NNs, have emerged as a promising approach, offering not only strong predictive accuracy but also reliable uncertainty estimation. However, their deployment is challenging due to substantial computational demands. Recent fundamental research has proposed more efficient NN ensembles, namely the snapshot, batch, and multi-input multi-output ensemble. This study is the first to provide a comprehensive comparison of a single NN, a deep ensemble, and the three efficient NN ensembles. In addition, we propose a Diversity Quality metric to quantify the ensembles' performance on the in-distribution and OOD sets in one single metric. The OR case study discusses industrial parts classification to identify and manage spare parts, important for timely maintenance of industrial plants. The results highlight the batch ensemble as a cost-effective and competitive alternative to the deep ensemble. It outperforms the deep ensemble in both uncertainty and accuracy while exhibiting a training time speedup of 7x, a test time speedup of 8x, and 9x memory savings.
Uncertainty is a key feature of any machine learning model and is particularly important in neural networks, which tend to be overconfident. This overconfidence is worrying under distribution shifts, where the model performance silently degrades as the data distribution diverges from the training data distribution. Uncertainty estimation offers a solution to overconfident models, communicating when the output should (not) be trusted. Although methods for uncertainty estimation have been developed, they have not been explicitly linked to the field of explainable artificial intelligence (XAI). Furthermore, literature in operations research ignores the actionability component of uncertainty estimation and does not consider distribution shifts. This work proposes a general uncertainty framework, with contributions being threefold: (i) uncertainty estimation in ML models is positioned as an XAI technique, giving local and model-specific explanations; (ii) classification with rejection is used to reduce misclassifications by bringing a human expert in the loop for uncertain observations; (iii) the framework is applied to a case study on neural networks in educational data mining subject to distribution shifts. Uncertainty as XAI improves the model's trustworthiness in downstream decision-making tasks, giving rise to more actionable and robust machine learning systems in operations research.
There are now many explainable AI methods for understanding the decisions of a machine learning model. Among these are those based on counterfactual reasoning, which involve simulating features changes and observing the impact on the prediction. This article proposes to view this simulation process as a source of creating a certain amount of knowledge that can be stored to be used, later, in different ways. This process is illustrated in the additive model and, more specifically, in the case of the naive Bayes classifier, whose interesting properties for this purpose are shown.
We hypothesize that due to the greedy nature of learning in multi-modal deep neural networks, these models tend to rely on just one modality while under-fitting the other modalities. Such behavior is counter-intuitive and hurts the models' generalization, as we observe empirically. To estimate the model's dependence on each modality, we compute the gain on the accuracy when the model has access to it in addition to another modality. We refer to this gain as the conditional utilization rate. In the experiments, we consistently observe an imbalance in conditional utilization rates between modalities, across multiple tasks and architectures. Since conditional utilization rate cannot be computed efficiently during training, we introduce a proxy for it based on the pace at which the model learns from each modality, which we refer to as the conditional learning speed. We propose an algorithm to balance the conditional learning speeds between modalities during training and demonstrate that it indeed addresses the issue of greedy learning. The proposed algorithm improves the model's generalization on three datasets: Colored MNIST, Princeton ModelNet40, and NVIDIA Dynamic Hand Gesture.