The Metaverse is considered to be one prototype of the next-generation Internet, which contains people's expectations for the future world. However, the academic discussion of the Metaverse still mainly focused on the technical system design, and few research studied Metaverse challenges from the perspective of consumers, i.e., Metaverse users. One difficulty is that the analysis from the consumer's perspective requires interdisciplinary theoretical framework and quantifiable Quality of Experience (QoE) measurements. In this article, pioneering from consumers' point of view, we explore an interaction between Metaverse system design and consumer behaviors. Specifically, we rethink QoE and propose an framework that encompasses both the Metaverse service providers (MSPs) and consumer considerations. From the macro perspective, we introduce a joint optimization scheme that simultaneously considers the Metaverse system design, consumers' utility, and profitability of the MSPs. From the micro perspective, we advocate the Willingness-to-Pay (WTP) as an easy-to-implement measurement for future Metaverse system studies. To illustrate the usability of the proposed integrated framework, a use case, i.e., virtual traveling, is presented. We show that our framework can benefit the MSPs in offering competitive and economical service design to consumers while maximizing the profit.
We propose a method that morphs high-orger meshes such that their boundaries and interfaces coincide/align with implicitly defined geometries. Our focus is particularly on the case when the target surface is prescribed as the zero isocontour of a smooth discrete function. Common examples of this scenario include using level set functions to represent material interfaces in multimaterial configurations, and evolving geometries in shape and topology optimization. The proposed method formulates the mesh optimization problem as a variational minimization of the sum of a chosen mesh-quality metric using the Target-Matrix Optimization Paradigm (TMOP) and a penalty term that weakly forces the selected faces of the mesh to align with the target surface. The distinct features of the method are use of a source mesh to represent the level set function with sufficient accuracy, and adaptive strategies for setting the penalization weight and selecting the faces of the mesh to be fit to the target isocontour of the level set field. We demonstrate that the proposed method is robust for generating boundary- and interface-fitted meshes for curvilinear domains using different element types in 2D and 3D.
ZooKeeper is a coordination service, widely used as a backbone of various distributed systems. Though its reliability is of critical importance, testing is insufficient for an industrial-strength system of the size and complexity of ZooKeeper, and deep bugs can still be found. To this end, we resort to formal TLA+ specifications to further improve the reliability of ZooKeeper. Our primary objective is usability and automation, rather than full verification. We incrementally develop three levels of specifications for ZooKeeper. We first obtain the protocol specification, which unambiguously specify the Zab protocol behind ZooKeeper. We then proceed to a finer grain and obtain the system specification, which serves as the super-doc for system development. In order to further leverage the model-level specification to improve the reliability of the code-level implementation, we develop the test specification, which guides the explorative testing of the ZooKeeper implementation. The formal specifications help eliminate the ambiguities in the protocol design and provide comprehensive system documentation. They also help find new critical deep bugs in system implementation, which are beyond the reach of state-of-the-art testing techniques.
Multimodal emotion recognition (MER) is a fundamental complex research problem due to the uncertainty of human emotional expression and the heterogeneity gap between different modalities. Audio and text modalities are particularly important for a human participant in understanding emotions. Although many successful attempts have been designed multimodal representations for MER, there still exist multiple challenges to be addressed: 1) bridging the heterogeneity gap between multimodal features and model inter- and intra-modal interactions of multiple modalities; 2) effectively and efficiently modelling the contextual dynamics in the conversation sequence. In this paper, we propose Cross-Modal RoBERTa (CM-RoBERTa) model for emotion detection from spoken audio and corresponding transcripts. As the core unit of the CM-RoBERTa, parallel self- and cross- attention is designed to dynamically capture inter- and intra-modal interactions of audio and text. Specially, the mid-level fusion and residual module are employed to model long-term contextual dependencies and learn modality-specific patterns. We evaluate the approach on the MELD dataset and the experimental results show the proposed approach achieves the state-of-art performance on the dataset.
Metaverse encapsulates our expectations of the next-generation Internet, while bringing new key performance indicators (KPIs). Although conventional ultra-reliable and low-latency communications (URLLC) can satisfy objective KPIs, it is difficult to provide a personalized immersive experience that is a distinctive feature of the Metaverse. Since the quality of experience (QoE) can be regarded as a comprehensive KPI, the URLLC is evolved towards the next generation URLLC (xURLLC) with a personalized resource allocation scheme to achieve higher QoE. To deploy Metaverse xURLLC services, we study the interaction between the Metaverse service provider (MSP) and the network infrastructure provider (InP), and provide an optimal contract design framework. Specifically, the utility of the MSP, defined as a function of Metaverse users' QoE, is to be maximized, while ensuring the incentives of the InP. To model the QoE mathematically, we propose a novel metric named Meta-Immersion that incorporates both the objective KPIs and subjective feelings of Metaverse users. Furthermore, we develop an attention-aware rendering capacity allocation scheme to improve QoE in xURLLC. Using a user-object-attention level dataset, we validate that the xURLLC can achieve an average of 20.1% QoE improvement compared to the conventional URLLC with a uniform resource allocation scheme.
When is heterogeneity in the composition of an autonomous robotic team beneficial and when is it detrimental? We investigate and answer this question in the context of a minimally viable model that examines the role of heterogeneous speeds in perimeter defense problems, where defenders share a total allocated speed budget. We consider two distinct problem settings and develop strategies based on dynamic programming and on local interaction rules. We present a theoretical analysis of both approaches and our results are extensively validated using simulations. Interestingly, our results demonstrate that the viability of heterogeneous teams depends on the amount of information available to the defenders. Moreover, our results suggest a universality property: across a wide range of problem parameters the optimal ratio of the speeds of the defenders remains nearly constant.
Along with the massive growth of the Internet from the 1990s until now, various innovative technologies have been created to bring users breathtaking experiences with more virtual interactions in cyberspace. Many virtual environments with thousands of services and applications, from social networks to virtual gaming worlds, have been developed with immersive experience and digital transformation, but most are incoherent instead of being integrated into a platform. In this context, metaverse, a term formed by combining meta and universe, has been introduced as a shared virtual world that is fueled by many emerging technologies, such as fifth-generation networks and beyond, virtual reality, and artificial intelligence (AI). Among such technologies, AI has shown the great importance of processing big data to enhance immersive experience and enable human-like intelligence of virtual agents. In this survey, we make a beneficial effort to explore the role of AI in the foundation and development of the metaverse. We first deliver a preliminary of AI, including machine learning algorithms and deep learning architectures, and its role in the metaverse. We then convey a comprehensive investigation of AI-based methods concerning six technical aspects that have potentials for the metaverse: natural language processing, machine vision, blockchain, networking, digital twin, and neural interface, and being potential for the metaverse. Subsequently, several AI-aided applications, such as healthcare, manufacturing, smart cities, and gaming, are studied to be deployed in the virtual worlds. Finally, we conclude the key contribution of this survey and open some future research directions in AI for the metaverse.
The dominating NLP paradigm of training a strong neural predictor to perform one task on a specific dataset has led to state-of-the-art performance in a variety of applications (eg. sentiment classification, span-prediction based question answering or machine translation). However, it builds upon the assumption that the data distribution is stationary, ie. that the data is sampled from a fixed distribution both at training and test time. This way of training is inconsistent with how we as humans are able to learn from and operate within a constantly changing stream of information. Moreover, it is ill-adapted to real-world use cases where the data distribution is expected to shift over the course of a model's lifetime. The first goal of this thesis is to characterize the different forms this shift can take in the context of natural language processing, and propose benchmarks and evaluation metrics to measure its effect on current deep learning architectures. We then proceed to take steps to mitigate the effect of distributional shift on NLP models. To this end, we develop methods based on parametric reformulations of the distributionally robust optimization framework. Empirically, we demonstrate that these approaches yield more robust models as demonstrated on a selection of realistic problems. In the third and final part of this thesis, we explore ways of efficiently adapting existing models to new domains or tasks. Our contribution to this topic takes inspiration from information geometry to derive a new gradient update rule which alleviate catastrophic forgetting issues during adaptation.
A community reveals the features and connections of its members that are different from those in other communities in a network. Detecting communities is of great significance in network analysis. Despite the classical spectral clustering and statistical inference methods, we notice a significant development of deep learning techniques for community detection in recent years with their advantages in handling high dimensional network data. Hence, a comprehensive overview of community detection's latest progress through deep learning is timely to both academics and practitioners. This survey devises and proposes a new taxonomy covering different categories of the state-of-the-art methods, including deep learning-based models upon deep neural networks, deep nonnegative matrix factorization and deep sparse filtering. The main category, i.e., deep neural networks, is further divided into convolutional networks, graph attention networks, generative adversarial networks and autoencoders. The survey also summarizes the popular benchmark data sets, model evaluation metrics, and open-source implementations to address experimentation settings. We then discuss the practical applications of community detection in various domains and point to implementation scenarios. Finally, we outline future directions by suggesting challenging topics in this fast-growing deep learning field.
Since real-world objects and their interactions are often multi-modal and multi-typed, heterogeneous networks have been widely used as a more powerful, realistic, and generic superclass of traditional homogeneous networks (graphs). Meanwhile, representation learning (\aka~embedding) has recently been intensively studied and shown effective for various network mining and analytical tasks. In this work, we aim to provide a unified framework to deeply summarize and evaluate existing research on heterogeneous network embedding (HNE), which includes but goes beyond a normal survey. Since there has already been a broad body of HNE algorithms, as the first contribution of this work, we provide a generic paradigm for the systematic categorization and analysis over the merits of various existing HNE algorithms. Moreover, existing HNE algorithms, though mostly claimed generic, are often evaluated on different datasets. Understandable due to the application favor of HNE, such indirect comparisons largely hinder the proper attribution of improved task performance towards effective data preprocessing and novel technical design, especially considering the various ways possible to construct a heterogeneous network from real-world application data. Therefore, as the second contribution, we create four benchmark datasets with various properties regarding scale, structure, attribute/label availability, and \etc.~from different sources, towards handy and fair evaluations of HNE algorithms. As the third contribution, we carefully refactor and amend the implementations and create friendly interfaces for 13 popular HNE algorithms, and provide all-around comparisons among them over multiple tasks and experimental settings.
Deep learning has penetrated all aspects of our lives and brought us great convenience. However, the process of building a high-quality deep learning system for a specific task is not only time-consuming but also requires lots of resources and relies on human expertise, which hinders the development of deep learning in both industry and academia. To alleviate this problem, a growing number of research projects focus on automated machine learning (AutoML). In this paper, we provide a comprehensive and up-to-date study on the state-of-the-art AutoML. First, we introduce the AutoML techniques in details according to the machine learning pipeline. Then we summarize existing Neural Architecture Search (NAS) research, which is one of the most popular topics in AutoML. We also compare the models generated by NAS algorithms with those human-designed models. Finally, we present several open problems for future research.