We present WeaverBird, an intelligent dialogue system designed specifically for the finance domain. Our system harnesses a large language model of GPT architecture that has been tuned using extensive corpora of finance-related text. As a result, our system possesses the capability to understand complex financial queries, such as "How should I manage my investments during inflation?", and provide informed responses. Furthermore, our system incorporates a local knowledge base and a search engine to retrieve relevant information. The final responses are conditioned on the search results and include proper citations to the sources, thus enjoying an enhanced credibility. Through a range of finance-related questions, we have demonstrated the superior performance of our system compared to other models. To experience our system firsthand, users can interact with our live demo at //weaverbird.ttic.edu, as well as watch our 2-min video illustration at //www.youtube.com/watch?v=yofgeqnlrMc.
There is a growing interest in using Large Language Models (LLMs) as agents to tackle real-world tasks that may require assessing complex situations. Yet, we have a limited understanding of LLMs' reasoning and decision-making capabilities, partly stemming from a lack of dedicated evaluation benchmarks. As negotiating and compromising are key aspects of our everyday communication and collaboration, we propose using scorable negotiation games as a new evaluation framework for LLMs. We create a testbed of diverse text-based, multi-agent, multi-issue, semantically rich negotiation games, with easily tunable difficulty. To solve the challenge, agents need to have strong arithmetic, inference, exploration, and planning capabilities, while seamlessly integrating them. Via a systematic zero-shot Chain-of-Thought prompting (CoT), we show that agents can negotiate and consistently reach successful deals. We quantify the performance with multiple metrics and observe a large gap between GPT-4 and earlier models. Importantly, we test the generalization to new games and setups. Finally, we show that these games can help evaluate other critical aspects, such as the interaction dynamics between agents in the presence of greedy and adversarial players.
The current Internet lacks a bandwidth-reservation infrastructure that enables fine-grained inter-domain reservations for end hosts. This is hindering the provisioning of quality-of-service guarantees for real-time applications like video calls and gaming, cloud-based systems, financial transactions, telesurgery, and other remote applications that benefit from reliable communication. This paper introduces Hummingbird, a novel lightweight inter-domain bandwidth-reservation system that addresses several shortcomings of previous designs. Hummingbird supports flexible and composable reservations and enables end-to-end guarantees without requiring autonomous systems to manage reservations for their endhosts. Previous systems tied reservations to autonomous-system numbers or network addresses, which limits the flexibility of reservations. In contrast, our system decouples reservations from network identities and, as a result, the control plane from the data plane. This design choice facilitates multiple co-existing control-plane mechanisms and enables innovative approaches, such as a control plane based on blockchain smart contracts that offers tradeable bandwidth-reservation assets and end-to-end guarantees. The data-plane design ensures simplicity for efficient processing on border routers, which streamlines implementation, deployment, and traffic policing while maintaining robust security properties.
Depth estimation provides an alternative approach for perceiving 3D information in autonomous driving. Monocular depth estimation, whether with single-frame or multi-frame inputs, has achieved significant success by learning various types of cues and specializing in either static or dynamic scenes. Recently, these cues fusion becomes an attractive topic, aiming to enable the combined cues to perform well in both types of scenes. However, adaptive cue fusion relies on attention mechanisms, where the quadratic complexity limits the granularity of cue representation. Additionally, explicit cue fusion depends on precise segmentation, which imposes a heavy burden on mask prediction. To address these issues, we propose the GSDC Transformer, an efficient and effective component for cue fusion in monocular multi-frame depth estimation. We utilize deformable attention to learn cue relationships at a fine scale, while sparse attention reduces computational requirements when granularity increases. To compensate for the precision drop in dynamic scenes, we represent scene attributes in the form of super tokens without relying on precise shapes. Within each super token attributed to dynamic scenes, we gather its relevant cues and learn local dense relationships to enhance cue fusion. Our method achieves state-of-the-art performance on the KITTI dataset with efficient fusion speed.
Data exploration and analysis in various domains often necessitate the search for specific objects in massive databases. A common search strategy, often known as search-by-classification, resorts to training machine learning models on small sets of positive and negative samples and to performing inference on the entire database to discover additional objects of interest. While such an approach often yields very good results in terms of classification performance, the entire database usually needs to be scanned, a process that can easily take several hours even for medium-sized data catalogs. In this work, we present RapidEarth, a geospatial search-by-classification engine that allows analysts to rapidly search for interesting objects in very large data collections of satellite imagery in a matter of seconds, without the need to scan the entire data catalog. RapidEarth embodies a co-design of multidimensional indexing structures and decision branches, a recently proposed variant of classical decision trees. These decision branches allow RapidEarth to transform the inference phase into a set of range queries, which can be efficiently processed by leveraging the aforementioned multidimensional indexing structures. The main contribution of this work is a geospatial search engine that implements these technical findings.
Large Language Models (LLMs), although powerful in general domains, often perform poorly on domain-specific tasks like medical question answering (QA). Moreover, they tend to function as "black-boxes," making it challenging to modify their behavior. Addressing this, our study delves into model editing utilizing in-context learning, aiming to improve LLM responses without the need for fine-tuning or retraining. Specifically, we propose a comprehensive retrieval strategy to extract medical facts from an external knowledge base, and then we incorporate them into the query prompt for the LLM. Focusing on medical QA using the MedQA-SMILE dataset, we evaluate the impact of different retrieval models and the number of facts provided to the LLM. Notably, our edited Vicuna model exhibited an accuracy improvement from 44.46% to 48.54%. This work underscores the potential of model editing to enhance LLM performance, offering a practical approach to mitigate the challenges of black-box LLMs.
Privacy policies outline the data practices of Online Social Networks (OSN) to comply with privacy regulations such as the EU-GDPR and CCPA. Several ontologies for modeling privacy regulations, policies, and compliance have emerged in recent years. However, they are limited in various ways: (1) they specifically model what is required of privacy policies according to one specific privacy regulation such as GDPR; (2) they provide taxonomies of concepts but are not sufficiently axiomatized to afford automated reasoning with them; and (3) they do not model data practices of privacy policies in sufficient detail to allow assessing the transparency of policies. This paper presents an OWL Ontology for Privacy Policies of OSNs, OPPO, that aims to fill these gaps by formalizing detailed data practices from OSNS' privacy policies. OPPO is grounded in BFO, IAO, OMRSE, and OBI, and its design is guided by the use case of representing and reasoning over the content of OSNs' privacy policies and evaluating policies' transparency in greater detail.
Graph Neural Networks (GNNs) have gained significant attention owing to their ability to handle graph-structured data and the improvement in practical applications. However, many of these models prioritize high utility performance, such as accuracy, with a lack of privacy consideration, which is a major concern in modern society where privacy attacks are rampant. To address this issue, researchers have started to develop privacy-preserving GNNs. Despite this progress, there is a lack of a comprehensive overview of the attacks and the techniques for preserving privacy in the graph domain. In this survey, we aim to address this gap by summarizing the attacks on graph data according to the targeted information, categorizing the privacy preservation techniques in GNNs, and reviewing the datasets and applications that could be used for analyzing/solving privacy issues in GNNs. We also outline potential directions for future research in order to build better privacy-preserving GNNs.
Maritime activities represent a major domain of economic growth with several emerging maritime Internet of Things use cases, such as smart ports, autonomous navigation, and ocean monitoring systems. The major enabler for this exciting ecosystem is the provision of broadband, low-delay, and reliable wireless coverage to the ever-increasing number of vessels, buoys, platforms, sensors, and actuators. Towards this end, the integration of unmanned aerial vehicles (UAVs) in maritime communications introduces an aerial dimension to wireless connectivity going above and beyond current deployments, which are mainly relying on shore-based base stations with limited coverage and satellite links with high latency. Considering the potential of UAV-aided wireless communications, this survey presents the state-of-the-art in UAV-aided maritime communications, which, in general, are based on both conventional optimization and machine-learning-aided approaches. More specifically, relevant UAV-based network architectures are discussed together with the role of their building blocks. Then, physical-layer, resource management, and cloud/edge computing and caching UAV-aided solutions in maritime environments are discussed and grouped based on their performance targets. Moreover, as UAVs are characterized by flexible deployment with high re-positioning capabilities, studies on UAV trajectory optimization for maritime applications are thoroughly discussed. In addition, aiming at shedding light on the current status of real-world deployments, experimental studies on UAV-aided maritime communications are presented and implementation details are given. Finally, several important open issues in the area of UAV-aided maritime communications are given, related to the integration of sixth generation (6G) advancements.
Deep Learning has revolutionized the fields of computer vision, natural language understanding, speech recognition, information retrieval and more. However, with the progressive improvements in deep learning models, their number of parameters, latency, resources required to train, etc. have all have increased significantly. Consequently, it has become important to pay attention to these footprint metrics of a model as well, not just its quality. We present and motivate the problem of efficiency in deep learning, followed by a thorough survey of the five core areas of model efficiency (spanning modeling techniques, infrastructure, and hardware) and the seminal work there. We also present an experiment-based guide along with code, for practitioners to optimize their model training and deployment. We believe this is the first comprehensive survey in the efficient deep learning space that covers the landscape of model efficiency from modeling techniques to hardware support. Our hope is that this survey would provide the reader with the mental model and the necessary understanding of the field to apply generic efficiency techniques to immediately get significant improvements, and also equip them with ideas for further research and experimentation to achieve additional gains.
User engagement is a critical metric for evaluating the quality of open-domain dialogue systems. Prior work has focused on conversation-level engagement by using heuristically constructed features such as the number of turns and the total time of the conversation. In this paper, we investigate the possibility and efficacy of estimating utterance-level engagement and define a novel metric, {\em predictive engagement}, for automatic evaluation of open-domain dialogue systems. Our experiments demonstrate that (1) human annotators have high agreement on assessing utterance-level engagement scores; (2) conversation-level engagement scores can be predicted from properly aggregated utterance-level engagement scores. Furthermore, we show that the utterance-level engagement scores can be learned from data. These scores can improve automatic evaluation metrics for open-domain dialogue systems, as shown by correlation with human judgements. This suggests that predictive engagement can be used as a real-time feedback for training better dialogue models.