亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Blockchain has been deemed as a promising solution for providing security and privacy protection in the next-generation wireless networks. Large-scale concurrent access for massive wireless devices to accomplish the consensus procedure may consume prohibitive communication and computing resources, and thus may limit the application of blockchain in wireless conditions. As most existing consensus protocols are designed for wired networks, directly apply them for wireless users may exhaust their scarce spectrum and computing resources. In this paper, we propose AirCon, a byzantine fault-tolerant (BFT) consensus protocol for wireless users via the over-the-air computation. The novelty of AirCon is to take advantage of the intrinsic characteristic of the wireless channel and automatically achieve the consensus in the physical layer while receiving from the end users, which greatly reduces the communication and computational cost that would be caused by traditional consensus protocols. We implement the AirCon protocol integrated into an LTE system and provide solutions to the critical issues for over-the-air consensus implementation. Experimental results are provided to show the feasibility of the proposed protocol, and simulation results to show the performance of the AirCon protocol under different wireless conditions.

相關內容

 區塊鏈(Blockchain)是由節點參與的分布式數據庫系統,它的特點是不可更改,不可偽造,也可以將其理解為賬簿系統(ledger)。它是比特幣的一個重要概念,完整比特幣區塊鏈的副本,記錄了其代幣(token)的每一筆交易。通過這些信息,我們可以找到每一個地址,在歷史上任何一點所擁有的價值。

知識薈萃

精品入門和進階教程、論文和代碼整理等

更多

查看相關VIP內容、論文、資訊等

During the past decades, evolutionary computation (EC) has demonstrated promising potential in solving various complex optimization problems of relatively small scales. Nowadays, however, ongoing developments in modern science and engineering are bringing increasingly grave challenges to the conventional EC paradigm in terms of scalability. As problem scales increase, on the one hand, the encoding spaces (i.e., dimensions of the decision vectors) are intrinsically larger; on the other hand, EC algorithms often require growing numbers of function evaluations (and probably larger population sizes as well) to work properly. To meet such emerging challenges, not only does it require delicate algorithm designs, but more importantly, a high-performance computing framework is indispensable. Hence, we develop a distributed GPU-accelerated algorithm library -- EvoX. First, we propose a generalized workflow for implementing general EC algorithms. Second, we design a scalable computing framework for running EC algorithms on distributed GPU devices. Third, we provide user-friendly interfaces to both researchers and practitioners for benchmark studies as well as extended real-world applications. Empirically, we assess the promising scalability of EvoX via a series of benchmark experiments with problem dimensions/population sizes up to millions. Moreover, we demonstrate the easy usability of EvoX by applying it to solving reinforcement learning tasks on OpenAI Gym. To the best of our knowledge, this is the first library supporting distributed GPU computing in the EC literature. The code of EvoX is available at //github.com/EMI-Group/EvoX.

This paper considers a LQR optimal control design problem for distributed control systems with multi-agents. To control large-scale distributed systems such as smart-grid and multi-agent robotic systems over wireless communication networks, it is desired to design a feedback controller by considering various constraints on communication such as limited power, limited energy, or limited communication bandwidth, etc. In this paper, we focus on the reduction of communication energy in an LQR optimal control design problem on wireless communication networks. By considering the characteristic of wireless communication, i.e., Radio Frequency (RF) signal can spread in all directions in a broadcast way, we formulate a low-rank LQR optimal control model to reduce the communication energy in the distributed feedback control system. To solve the problem, we propose an Alternating Direction Method of Multipliers (ADMM) based algorithm. Through various numerical experiments, we demonstrate that a feedback controller designed using low-rank structure can outperform the previous work on sparse LQR optimal control design, which focuses on reducing the number of communication links in a network, in terms of energy consumption, system stability margin against noise and error in communication.

Millimeter wave (mmWave) and terahertz MIMO systems rely on pre-defined beamforming codebooks for both initial access and data transmission. However, most of the existing codebooks adopt pre-defined beams that focus mainly on improving the gain of their target users, without taking interference into account, which could incur critical performance degradation in dense networks. To address this problem, in this paper, we propose a sample-efficient digital twin-assisted beam pattern design framework that learns how to form the beam pattern to reject the signals from the interfering directions. The proposed approach does not require any explicit channel knowledge or any coordination with the interferers. The adoption of the digital twin improves the sample efficiency by better leveraging the underlying signal relationship and by incorporating a demand-based data acquisition strategy. Simulation results show that the developed signal model-based learning framework can significantly reduce the actual interaction with the radio environment (i.e., the number of measurements) compared to the model-unaware design, leading to a more practical and efficient interference-aware beam design approach.

We investigate the expressive power of depth-2 bandlimited random neural networks. A random net is a neural network where the hidden layer parameters are frozen with random assignment, and only the output layer parameters are trained by loss minimization. Using random weights for a hidden layer is an effective method to avoid non-convex optimization in standard gradient descent learning. It has also been adopted in recent deep learning theories. Despite the well-known fact that a neural network is a universal approximator, in this study, we mathematically show that when hidden parameters are distributed in a bounded domain, the network may not achieve zero approximation error. In particular, we derive a new nontrivial approximation error lower bound. The proof utilizes the technique of ridgelet analysis, a harmonic analysis method designed for neural networks. This method is inspired by fundamental principles in classical signal processing, specifically the idea that signals with limited bandwidth may not always be able to perfectly recreate the original signal. We corroborate our theoretical results with various simulation studies, and generally, two main take-home messages are offered: (i) Not any distribution for selecting random weights is feasible to build a universal approximator; (ii) A suitable assignment of random weights exists but to some degree is associated with the complexity of the target function.

Cell-free massive MIMO is emerging as a promising technology for future wireless communication systems, which is expected to offer uniform coverage and high spectral efficiency compared to classical cellular systems. We study in this paper how cell-free massive MIMO can support federated edge learning. Taking advantage of the additive nature of the wireless multiple access channel, over-the-air computation is exploited, where the clients send their local updates simultaneously over the same communication resource. This approach, known as over-the-air federated learning (OTA-FL), is proven to alleviate the communication overhead of federated learning over wireless networks. Considering channel correlation and only imperfect channel state information available at the central server, we propose a practical implementation of OTA-FL over cell-free massive MIMO. The convergence of the proposed implementation is studied analytically and experimentally, confirming the benefits of cell-free massive MIMO for OTA-FL.

Autonomous truck and trailer configurations face challenges when operating in reverse due to the lack of sensing on the trailer. It is anticipated that sensor packages will be installed on existing trailers to extend autonomous operations while operating in reverse in uncontrolled environments, like a customer's loading dock. Power Line Communication (PLC) between the trailer and the tractor cannot support high bandwidth and low latency communication. This paper explores the impact of using Ethernet or a wireless medium for commercial trailer-tractor communication on the lifecycle and operation of trailer electronic control units (ECUs) from a Systems Engineering perspective to address system requirements, integration, and security. Additionally, content-based and host-based networking approaches for in-vehicle communication, such as Named Data Networking (NDN) and IP-based networking are compared. Implementation, testing and evaluation of prototype trailer ECU communication with the tractor ECUs over Ethernet is shown by transmitting different data types simultaneously. The implementation is tested with two networking approaches, Named Data Networking, and Data Distribution Service (DDS) and the test indicated that NDN over TCP is an efficient approach that is capable of meeting automotive communication requirements. Using Ethernet or a wireless harness and NDN for commercial trailer Anti-Lock Braking System (ABS) ECU provides adequate resources for the operation of autonomous trucks and the expansion of its capabilities, and at the same time significantly reduces the complexities compared to when new features are added to legacy communication systems. Using a wireless medium for tractor-trailer communication will bring new cybersecurity challenges and requirements which requires new development and lifecycle considerations.

Extremely large-scale array (XL-array) is envisioned to achieve super-high spectral efficiency in future wireless networks. Different from the existing works that mostly focus on the near-field communications, we consider in this paper a new and practical scenario, called mixed near- and far-field communications, where there exist both near- and far-field users in the network. For this scenario, we first obtain a closed-form expression for the inter-user interference at the near-field user caused by the far-field beam by using Fresnel functions, based on which the effects of the number of BS antennas, far-field user (FU) angle, near-field user (NU) angle and distance are analyzed. We show that the strong interference exists when the number of the BS antennas and the NU distance are relatively small, and/or the NU and FU angle-difference is small. Then, we further obtain the achievable rate of the NU as well as its rate loss caused by the FU interference. Last, numerical results are provided to corroborate our analytical results.

We consider distributed average consensus in a wireless network with partial communication to reduce the number of transmissions in every iteration/round. Considering the broadcast nature of wireless channels, we propose a probabilistic approach that schedules a subset of nodes for broadcasting information to their neighbors in every round. We compare several heuristic methods for assigning the node broadcast probabilities under a fixed number of transmissions per round. Furthermore, we introduce a pre-compensation method to correct the bias between the consensus value and the average of the initial values, and suggest possible extensions for our design. Our results are particularly relevant for developing communication-efficient consensus protocols in a wireless environment with limited frequency/time resources.

Over the past few years, the rapid development of deep learning technologies for computer vision has greatly promoted the performance of medical image segmentation (MedISeg). However, the recent MedISeg publications usually focus on presentations of the major contributions (e.g., network architectures, training strategies, and loss functions) while unwittingly ignoring some marginal implementation details (also known as "tricks"), leading to a potential problem of the unfair experimental result comparisons. In this paper, we collect a series of MedISeg tricks for different model implementation phases (i.e., pre-training model, data pre-processing, data augmentation, model implementation, model inference, and result post-processing), and experimentally explore the effectiveness of these tricks on the consistent baseline models. Compared to paper-driven surveys that only blandly focus on the advantages and limitation analyses of segmentation models, our work provides a large number of solid experiments and is more technically operable. With the extensive experimental results on both the representative 2D and 3D medical image datasets, we explicitly clarify the effect of these tricks. Moreover, based on the surveyed tricks, we also open-sourced a strong MedISeg repository, where each of its components has the advantage of plug-and-play. We believe that this milestone work not only completes a comprehensive and complementary survey of the state-of-the-art MedISeg approaches, but also offers a practical guide for addressing the future medical image processing challenges including but not limited to small dataset learning, class imbalance learning, multi-modality learning, and domain adaptation. The code has been released at: //github.com/hust-linyi/MedISeg

We describe ACE0, a lightweight platform for evaluating the suitability and viability of AI methods for behaviour discovery in multiagent simulations. Specifically, ACE0 was designed to explore AI methods for multi-agent simulations used in operations research studies related to new technologies such as autonomous aircraft. Simulation environments used in production are often high-fidelity, complex, require significant domain knowledge and as a result have high R&D costs. Minimal and lightweight simulation environments can help researchers and engineers evaluate the viability of new AI technologies for behaviour discovery in a more agile and potentially cost effective manner. In this paper we describe the motivation for the development of ACE0.We provide a technical overview of the system architecture, describe a case study of behaviour discovery in the aerospace domain, and provide a qualitative evaluation of the system. The evaluation includes a brief description of collaborative research projects with academic partners, exploring different AI behaviour discovery methods.

北京阿比特科技有限公司