亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Despite the empirical version of least trimmed squares (LTS) in regression (Rousseeuw \cite{R84}) having been repeatedly studied in the literature, the population version of LTS has never been introduced. Novel properties of the objective function in both empirical and population settings of the LTS, along with other properties, are established for the first time in this article. The primary properties of the objective function facilitate the establishment of other original results, including the influence function and Fisher consistency. The strong consistency is established with the help of a generalized Glivenko-Cantelli Theorem over a class of functions. Differentiability and stochastic equicontinuity promote the establishment of asymptotic normality with a concise and novel approach.

相關內容

We describe and analyze a quasi-Trefftz DG method for solving boundary value problems for the homogeneous diffusion-advection-reaction equation with piecewise-smooth coefficients. Trefftz schemes are high-order Galerkin methods whose discrete functions are elementwise exact solutions of the underlying PDE. Trefftz basis functions can be computed for many PDEs that are linear, homogeneous and with piecewise-constant coefficients. However, if the equation has varying coefficients, in general, exact solutions are unavailable, hence the construction of discrete Trefftz spaces is impossible. Quasi-Trefftz methods have been introduced to overcome this limitation, relying on discrete spaces of functions that are elementwise "approximate solutions" of the PDE. A space-time quasi-Trefftz DG method for the acoustic wave equation with smoothly varying coefficients has recently been studied; since it has shown excellent results, we propose a related method that can be applied to second-order elliptic equations. The DG weak formulation is derived using an interior penalty parameter and the upwind numerical fluxes. We choose polynomial quasi-Trefftz basis functions, whose coefficients can be computed with a simple algorithm based on the Taylor expansion of the PDE's coefficients. The main advantage of Trefftz and quasi-Trefftz schemes over more classical ones is the higher accuracy for comparable numbers of degrees of freedom. We prove that the dimension of the quasi-Trefftz space is smaller than the dimension of the full polynomial space of the same degree and that yields the same optimal convergence rates. The quasi-Trefftz DG method is well-posed, consistent and stable and we prove its high-order convergence. We present some numerical experiments in two dimensions that show excellent properties in terms of approximation and convergence rate.

We present a comprehensive analysis of the implications of artificial latency in the Proposer-Builder Separation framework on the Ethereum network. Focusing on the MEV-Boost auction system, we analyze how strategic latency manipulation affects Maximum Extractable Value yields and network integrity. Our findings reveal both increased profitability for node operators and significant systemic challenges, including heightened network inefficiencies and centralization risks. We empirically validates these insights with a pilot that Chorus One has been operating on Ethereum mainnet. We demonstrate the nuanced effects of latency on bid selection and validator dynamics. Ultimately, this research underscores the need for balanced strategies that optimize Maximum Extractable Value capture while preserving the Ethereum network's decentralization ethos.

This paper presents an approach for efficiently approximating the inverse of Fisher information, a key component in variational Bayes inference. A notable aspect of our approach is the avoidance of analytically computing the Fisher information matrix and its explicit inversion. Instead, we introduce an iterative procedure for generating a sequence of matrices that converge to the inverse of Fisher information. The natural gradient variational Bayes algorithm without matrix inversion is provably convergent and achieves a convergence rate of order O(log s/s), with s the number of iterations. We also obtain a central limit theorem for the iterates. Our algorithm exhibits versatility, making it applicable across a diverse array of variational Bayes domains, including Gaussian approximation and normalizing flow Variational Bayes. We offer a range of numerical examples to demonstrate the efficiency and reliability of the proposed variational Bayes method.

The field of adversarial textual attack has significantly grown over the last few years, where the commonly considered objective is to craft adversarial examples (AEs) that can successfully fool the target model. However, the imperceptibility of attacks, which is also essential for practical attackers, is often left out by previous studies. In consequence, the crafted AEs tend to have obvious structural and semantic differences from the original human-written text, making them easily perceptible. In this work, we advocate leveraging multi-objectivization to address such issue. Specifically, we reformulate the problem of crafting AEs as a multi-objective optimization problem, where the attack imperceptibility is considered as an auxiliary objective. Then, we propose a simple yet effective evolutionary algorithm, dubbed HydraText, to solve this problem. To the best of our knowledge, HydraText is currently the only approach that can be effectively applied to both score-based and decision-based attack settings. Exhaustive experiments involving 44237 instances demonstrate that HydraText consistently achieves competitive attack success rates and better attack imperceptibility than the recently proposed attack approaches. A human evaluation study also shows that the AEs crafted by HydraText are more indistinguishable from human-written text. Finally, these AEs exhibit good transferability and can bring notable robustness improvement to the target model by adversarial training.

We use Stein characterisations to derive new moment-type estimators for the parameters of several multivariate distributions in the i.i.d. case; we also derive the asymptotic properties of these estimators. Our examples include the multivariate truncated normal distribution and several spherical distributions. The estimators are explicit and therefore provide an interesting alternative to the maximum-likelihood estimator. The quality of these estimators is assessed through competitive simulation studies in which we compare their behaviour to the performance of other estimators available in the literature.

Compressed Sensing (CS) encompasses a broad array of theoretical and applied techniques for recovering signals, given partial knowledge of their coefficients. Its applications span various fields, including mathematics, physics, engineering, and several medical sciences. Motivated by our interest in the mathematics behind Magnetic Resonance Imaging (MRI) and CS, we employ convex analysis techniques to analytically determine equivalents of Lagrange multipliers for optimization problems with inequality constraints, specifically a weighted LASSO with voxel-wise weighting. We investigate this problem under assumptions on the fidelity term $\Vert{Ax-b}\Vert_2^2$, either concerning the sign of its gradient or orthogonality-like conditions of its matrix. To be more precise, we either require the sign of each coordinate of $2(Ax-b)^TA$ to be fixed within a rectangular neighborhood of the origin, with the side lengths of the rectangle dependent on the constraints, or we assume $A^TA$ to be diagonal. The objective of this work is to explore the relationship between Lagrange multipliers and the constraints of a weighted variant of LASSO, specifically in the mentioned cases where this relationship can be computed explicitly. As they scale the regularization terms of the weighted LASSO, Lagrange multipliers serve as tuning parameters for the weighted LASSO, prompting the question of their potential effective use as tuning parameters in applications like MR image reconstruction and denoising. This work represents an initial step in this direction.

Haagerup's proof of the non commutative little Grothendieck inequality raises some questions on the commutative little inequality, and it offers a new result on scalar matrices with non negative entries. The theory of completely bounded maps implies that the commutative Grothendieck inequality follows from the little commutative inequality, and that this passage may be given a geometric form as a relation between a pair of compact convex sets of positive matrices, which, in turn, characterizes the little constant in the complex case.

Generalized Additive Runge-Kutta schemes have shown to be a suitable tool for solving ordinary differential equations with additively partitioned right-hand sides. This work develops symplectic GARK schemes for additively partitioned Hamiltonian systems. In a general setting, we derive conditions for symplecticness, as well as symmetry and time-reversibility. We show how symplectic and symmetric schemes can be constructed based on schemes which are only symplectic, or only symmetric. Special attention is given to the special case of partitioned schemes for Hamiltonians split into multiple potential and kinetic energies. Finally we show how symplectic GARK schemes can leverage different time scales and evaluation costs for different potentials, and provide efficient numerical solutions by using different order for these parts.

Enumeration problems are often encountered as key subroutines in the exact computation of graph parameters such as chromatic number, treewidth, or treedepth. In the case of treedepth computation, the enumeration of inclusion-wise minimal separators plays a crucial role. However and quite surprisingly, the complexity status of this problem has not been settled since it has been posed as an open direction by Kloks and Kratsch in 1998. Recently at the PACE 2020 competition dedicated to treedepth computation, solvers have been circumventing that by listing all minimal $a$-$b$ separators and filtering out those that are not inclusion-wise minimal, at the cost of efficiency. Naturally, having an efficient algorithm for listing inclusion-wise minimal separators would drastically improve such practical algorithms. In this note, however, we show that no efficient algorithm is to be expected from an output-sensitive perspective, namely, we prove that there is no output-polynomial time algorithm for inclusion-wise minimal separators enumeration unless P = NP.

The dichromatic number of a digraph is the minimum size of a partition of its vertices into acyclic induced subgraphs. Given a class of digraphs $\mathcal C$, a digraph $H$ is a hero in $\mc C$ if $H$-free digraphs of $\mathcal C$ have bounded dichromatic number. In a seminal paper, Berger at al. give a simple characterization of all heroes in tournaments. In this paper, we give a simple proof that heroes in quasi-transitive oriented graphs are the same as heroes in tournaments. We also prove that it is not the case in the class of oriented multipartite graphs, disproving a conjecture of Aboulker, Charbit and Naserasr. We also give a full characterisation of heroes in oriented complete multipartite graphs up to the status of a single tournament on $6$ vertices.

北京阿比特科技有限公司