亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

With the development of machine learning, it is difficult for a single server to process all the data. So machine learning tasks need to be spread across multiple servers, turning centralized machine learning into a distributed one. However, privacy remains an unsolved problem in distributed machine learning. Multi-key homomorphic encryption over torus (MKTFHE) is one of the suitable candidates to solve the problem. However, there may be security risks in the decryption of MKTFHE and the most recent result about MKFHE only supports the Boolean operation and linear operation. So, MKTFHE cannot compute the non-linear function like Sigmoid directly and it is still hard to perform common machine learning such as logistic regression and neural networks in high performance. This paper first introduces secret sharing to propose a new distributed decryption protocol for MKTFHE, then designs an MKTFHE-friendly activation function, and finally utilizes them to implement logistic regression and neural network training in MKTFHE. We prove the correctness and security of our decryption protocol and compare the efficiency and accuracy between using Taylor polynomials of Sigmoid and our proposed function as an activation function. The experiments show that the efficiency of our function is 10 times higher than using 7-order Taylor polynomials straightly and the accuracy of the training model is similar to that of using a high-order polynomial as an activation function scheme.

相關內容

Machine Learning (ML) has achieved enormous success in solving a variety of problems in computer vision, speech recognition, object detection, to name a few. The principal reason for this success is the availability of huge datasets for training deep neural networks (DNNs). However, datasets cannot be publicly released if they contain sensitive information such as medical records, and data privacy becomes a major concern. Encryption methods could be a possible solution, however their deployment on ML applications seriously impacts classification accuracy and results in substantial computational overhead. Alternatively, obfuscation techniques could be used, but maintaining a good trade-off between visual privacy and accuracy is challenging. In this paper, we propose a method to generate secure synthetic datasets from the original private datasets. Given a network with Batch Normalization (BN) layers pretrained on the original dataset, we first record the class-wise BN layer statistics. Next, we generate the synthetic dataset by optimizing random noise such that the synthetic data match the layer-wise statistical distribution of original images. We evaluate our method on image classification datasets (CIFAR10, ImageNet) and show that synthetic data can be used in place of the original CIFAR10/ImageNet data for training networks from scratch, producing comparable classification performance. Further, to analyze visual privacy provided by our method, we use Image Quality Metrics and show high degree of visual dissimilarity between the original and synthetic images. Moreover, we show that our proposed method preserves data-privacy under various privacy-leakage attacks including Gradient Matching Attack, Model Memorization Attack, and GAN-based Attack.

We study the privatization of distributed learning and optimization strategies. We focus on differential privacy schemes and study their effect on performance. We show that the popular additive random perturbation scheme degrades performance because it is not well-tuned to the graph structure. For this reason, we exploit two alternative graph-homomorphic constructions and show that they improve performance while guaranteeing privacy. Moreover, contrary to most earlier studies, the gradient of the risks is not assumed to be bounded (a condition that rarely holds in practice; e.g., quadratic risk). We avoid this condition and still devise a differentially private scheme with high probability. We examine optimization and learning scenarios and illustrate the theoretical findings through simulations.

Nowadays, big datasets are spread over many machines which compute in parallel and communicate with a central machine through short messages. We consider a sparse regression setting in our paper and develop a new procedure for selective inference with distributed data. While there are many distributed procedures for point estimation in the sparse setting, not many options exist for estimating uncertainties or conducting hypothesis tests in models based on the estimated sparsity. We solve a generalized linear regression on each machine which communicates a selected set of predictors to the central machine. The central machine forms a generalized linear model with the selected predictors. How do we conduct selective inference for the selected regression coefficients? Is it possible to reuse distributed data, in an aggregated form, for selective inference? Our proposed procedure bases approximately-valid selective inference on an asymptotic likelihood. The proposal seeks only aggregated information, in relatively few dimensions, from each machine which is merged at the central machine to construct selective inference. Our procedure is also broadly applicable as a solution to the p-value lottery problem that arises with model selection on random splits of data.

Federated learning (FL) takes a first step towards privacy-preserving machine learning by training models while keeping client data local. Models trained using FL may still leak private client information through model updates during training. Differential privacy (DP) may be employed on model updates to provide privacy guarantees within FL, typically at the cost of degraded performance of the final trained model. Both non-private FL and DP-FL can be solved using variants of the federated averaging (FedAvg) algorithm. In this work, we consider a heterogeneous DP setup where clients require varying degrees of privacy guarantees. First, we analyze the optimal solution to the federated linear regression problem with heterogeneous DP in a Bayesian setup. We find that unlike the non-private setup, where the optimal solution for homogeneous data amounts to a single global solution for all clients learned through FedAvg, the optimal solution for each client in this setup would be a personalized one even for homogeneous data. We also analyze the privacy-utility trade-off for this setup, where we characterize the gain obtained from heterogeneous privacy where some clients opt for less strict privacy guarantees. We propose a new algorithm for FL with heterogeneous DP, named FedHDP, which employs personalization and weighted averaging at the server using the privacy choices of clients, to achieve better performance on clients' local models. Through numerical experiments, we show that FedHDP provides up to $9.27\%$ performance gain compared to the baseline DP-FL for the considered datasets where $5\%$ of clients opt out of DP. Additionally, we show a gap in the average performance of local models between non-private and private clients of up to $3.49\%$, empirically illustrating that the baseline DP-FL might incur a large utility cost when not all clients require the stricter privacy guarantees.

We deal with a general distributed constrained online learning problem with privacy over time-varying networks, where a class of nondecomposable objectives are considered. Under this setting, each node only controls a part of the global decision, and the goal of all nodes is to collaboratively minimize the global cost over a time horizon $T$ while guarantees the security of the transmitted information. For such problems, we first design a novel generic algorithm framework, named as DPSDA, of differentially private distributed online learning using the Laplace mechanism and the stochastic variants of dual averaging method. Note that in the dual updates, all nodes of DPSDA employ the noise-corrupted gradients for more generality. Then, we propose two algorithms, named as DPSDA-C and DPSDA-PS, under this framework. In DPSDA-C, the nodes implement a circulation-based communication in the primal updates so as to alleviate the disagreements over time-varying undirected networks. In addition, for the extension to time-varying directed ones, the nodes implement the broadcast-based push-sum dynamics in DPSDA-PS, which can achieve average consensus over arbitrary directed networks. Theoretical results show that both algorithms attain an expected regret upper bound in $\mathcal{O}( \sqrt{T} )$ when the objective function is convex, which matches the best utility achievable by cutting-edge algorithms. Finally, numerical experiment results on both synthetic and real-world datasets verify the effectiveness of our algorithms.

$f$-DP has recently been proposed as a generalization of differential privacy allowing a lossless analysis of composition, post-processing, and privacy amplification via subsampling. In the setting of $f$-DP, we propose the concept of a canonical noise distribution (CND), the first mechanism designed for an arbitrary $f$-DP guarantee. The notion of CND captures whether an additive privacy mechanism perfectly matches the privacy guarantee of a given $f$. We prove that a CND always exists, and give a construction that produces a CND for any $f$. We show that private hypothesis tests are intimately related to CNDs, allowing for the release of private $p$-values at no additional privacy cost as well as the construction of uniformly most powerful (UMP) tests for binary data, within the general $f$-DP framework. We apply our techniques to the problem of difference of proportions testing, and construct a UMP unbiased (UMPU) "semi-private" test which upper bounds the performance of any $f$-DP test. Using this as a benchmark we propose a private test, based on the inversion of characteristic functions, which allows for optimal inference for the two population parameters and is nearly as powerful as the semi-private UMPU. When specialized to the case of $(\epsilon,0)$-DP, we show empirically that our proposed test is more powerful than any $(\epsilon/\sqrt 2)$-DP test and has more accurate type I errors than the classic normal approximation test.

Federated Learning (FL) is a distributed machine learning paradigm where clients collaboratively train a model using their local (human-generated) datasets. While existing studies focus on FL algorithm development to tackle data heterogeneity across clients, the important issue of data quality (e.g., label noise) in FL is overlooked. This paper aims to fill this gap by providing a quantitative study on the impact of label noise on FL. We derive an upper bound for the generalization error that is linear in the clients' label noise level. Then we conduct experiments on MNIST and CIFAR-10 datasets using various FL algorithms. Our empirical results show that the global model accuracy linearly decreases as the noise level increases, which is consistent with our theoretical analysis. We further find that label noise slows down the convergence of FL training, and the global model tends to overfit when the noise level is high.

Classic machine learning methods are built on the $i.i.d.$ assumption that training and testing data are independent and identically distributed. However, in real scenarios, the $i.i.d.$ assumption can hardly be satisfied, rendering the sharp drop of classic machine learning algorithms' performances under distributional shifts, which indicates the significance of investigating the Out-of-Distribution generalization problem. Out-of-Distribution (OOD) generalization problem addresses the challenging setting where the testing distribution is unknown and different from the training. This paper serves as the first effort to systematically and comprehensively discuss the OOD generalization problem, from the definition, methodology, evaluation to the implications and future directions. Firstly, we provide the formal definition of the OOD generalization problem. Secondly, existing methods are categorized into three parts based on their positions in the whole learning pipeline, namely unsupervised representation learning, supervised model learning and optimization, and typical methods for each category are discussed in detail. We then demonstrate the theoretical connections of different categories, and introduce the commonly used datasets and evaluation metrics. Finally, we summarize the whole literature and raise some future directions for OOD generalization problem. The summary of OOD generalization methods reviewed in this survey can be found at //out-of-distribution-generalization.com.

The demand for artificial intelligence has grown significantly over the last decade and this growth has been fueled by advances in machine learning techniques and the ability to leverage hardware acceleration. However, in order to increase the quality of predictions and render machine learning solutions feasible for more complex applications, a substantial amount of training data is required. Although small machine learning models can be trained with modest amounts of data, the input for training larger models such as neural networks grows exponentially with the number of parameters. Since the demand for processing training data has outpaced the increase in computation power of computing machinery, there is a need for distributing the machine learning workload across multiple machines, and turning the centralized into a distributed system. These distributed systems present new challenges, first and foremost the efficient parallelization of the training process and the creation of a coherent model. This article provides an extensive overview of the current state-of-the-art in the field by outlining the challenges and opportunities of distributed machine learning over conventional (centralized) machine learning, discussing the techniques used for distributed machine learning, and providing an overview of the systems that are available.

In recent years, mobile devices have gained increasingly development with stronger computation capability and larger storage. Some of the computation-intensive machine learning and deep learning tasks can now be run on mobile devices. To take advantage of the resources available on mobile devices and preserve users' privacy, the idea of mobile distributed machine learning is proposed. It uses local hardware resources and local data to solve machine learning sub-problems on mobile devices, and only uploads computation results instead of original data to contribute to the optimization of the global model. This architecture can not only relieve computation and storage burden on servers, but also protect the users' sensitive information. Another benefit is the bandwidth reduction, as various kinds of local data can now participate in the training process without being uploaded to the server. In this paper, we provide a comprehensive survey on recent studies of mobile distributed machine learning. We survey a number of widely-used mobile distributed machine learning methods. We also present an in-depth discussion on the challenges and future directions in this area. We believe that this survey can demonstrate a clear overview of mobile distributed machine learning and provide guidelines on applying mobile distributed machine learning to real applications.

北京阿比特科技有限公司