亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

A pervasive methodological error is the post-hoc interpretation of $p$-values. A $p$-value $p$ is the smallest significance level at which we would have rejected the null had we chosen level $p$. It is not the smallest significance level at which we reject the null. We introduce post-hoc $p$-values, that do admit such a post-hoc interpretation. We show that $p$ is a post-hoc $p$-value if and only if $1/p$ is an $e$-value, a recently introduced statistical object. The product of independent post-hoc $p$-values is a post-hoc $p$-value, making them easy to combine. Moreover, any post-hoc $p$-value can be trivially improved if we permit external randomization, but only (essentially) non-randomized post-hoc $p$-values can be arbitrarily merged through multiplication. In addition, we discuss what constitutes a `good' post-hoc $p$-value. Finally, we argue that post-hoc $p$-values eliminate the need of a pre-specified significance level, such as $\alpha = .05$ or $\alpha = .005$ (Benjamin et al., 2018). We believe this may take away incentives for $p$-hacking and contribute to solving the file-drawer problem, as both these issues arise from using a pre-specified significance level.

相關內容

The merit factor of a $\{-1, 1\}$ binary sequence measures the collective smallness of its non-trivial aperiodic autocorrelations. Binary sequences with large merit factor are important in digital communications because they allow the efficient separation of signals from noise. It is a longstanding open question whether the maximum merit factor is asymptotically unbounded and, if so, what is its limiting value. Attempts to answer this question over almost sixty years have identified certain classes of binary sequences as particularly important: skew-symmetric sequences, symmetric sequences, and anti-symmetric sequences. Using only elementary methods, we find an exact formula for the mean and variance of the reciprocal merit factor of sequences in each of these classes, and in the class of all binary sequences. This provides a much deeper understanding of the distribution of the merit factor in these four classes than was previously available. A consequence is that, for each of the four classes, the merit factor of a sequence drawn uniformly at random from the class converges in probability to a constant as the sequence length increases.

We consider extended $1$-perfect codes in Hamming graphs $H(n,q)$. Such nontrivial codes are known only when $n=2^k$, $k\geq 1$, $q=2$, or $n=q+2$, $q=2^m$, $m\geq 1$. Recently, Bespalov proved nonexistence of extended $1$-perfect codes for $q=3$, $4$, $n>q+2$. In this work, we characterize all positive integers $n$, $r$ and prime $p$, for which there exist such a code in $H(n,p^r)$.

We establish an invariance principle for polynomial functions of $n$ independent high-dimensional random vectors, and also show that the obtained rates are nearly optimal. Both the dimension of the vectors and the degree of the polynomial are permitted to grow with $n$. Specifically, we obtain a finite sample upper bound for the error of approximation by a polynomial of Gaussians, measured in Kolmogorov distance, and extend it to functions that are approximately polynomial in a mean squared error sense. We give a corresponding lower bound that shows the invariance principle holds up to polynomial degree $o(\log n)$. The proof is constructive and adapts an asymmetrisation argument due to V. V. Senatov. As applications, we obtain a higher-order delta method with possibly non-Gaussian limits, and generalise a number of known results on high-dimensional and infinite-order U-statistics, and on fluctuations of subgraph counts.

We show that for log-concave real random variables with fixed variance the Shannon differential entropy is minimized for an exponential random variable. We apply this result to derive upper bounds on capacities of additive noise channels with log-concave noise. We also improve constants in the reverse entropy power inequalities for log-concave random variables.

The logics $\mathsf{CS4}$ and $\mathsf{IS4}$ are the two leading intuitionistic variants of the modal logic $\mathsf{S4}$. Whether the finite model property holds for each of these logics have been long-standing open problems. It was recently shown that $\mathsf{IS4}$ has the finite frame property and thus the finite model property. In this paper, we prove that $\mathsf{CS4}$ also enjoys the finite frame property. Additionally, we investigate the following three logics closely related to $\mathsf{IS4}$. The logic $\mathsf{GS4}$ is obtained by adding the G\"odel--Dummett axiom to $\mathsf{IS4}$; it is both a superintuitionistic and a fuzzy logic and has previously been given a real-valued semantics. We provide an alternative birelational semantics and prove strong completeness with respect to this semantics. The extension $\mathsf{GS4^c}$ of $\mathsf{GS4}$ corresponds to requiring a crisp accessibility relation on the real-valued semantics. We give a birelational semantics corresponding to an extra confluence condition on the $\mathsf{GS4}$ birelational semantics and prove strong completeness. Neither of these two logics have the finite model property with respect to their real-valued semantics, but we prove that they have the finite frame property for their birelational semantics. Establishing the finite birelational frame property immediately establishes decidability, which was previously open for these two logics. Our proofs yield NEXPTIME upper bounds. The logic $\mathsf{S4I}$ is obtained from $\mathsf{IS4}$ by reversing the roles of the modal and intuitionistic relations in the birelational semantics. We also prove the finite frame property, and thereby decidability, for $\mathsf{S4I}$

Regression models that incorporate smooth functions of predictor variables to explain the relationships with a response variable have gained widespread usage and proved successful in various applications. By incorporating smooth functions of predictor variables, these models can capture complex relationships between the response and predictors while still allowing for interpretation of the results. In situations where the relationships between a response variable and predictors are explored, it is not uncommon to assume that these relationships adhere to certain shape constraints. Examples of such constraints include monotonicity and convexity. The scam package for R has become a popular package to carry out the full fitting of exponential family generalized additive modelling with shape restrictions on smooths. The paper aims to extend the existing framework of shape-constrained generalized additive models (SCAM) to accommodate smooth interactions of covariates, linear functionals of shape-constrained smooths and incorporation of residual autocorrelation. The methods described in this paper are implemented in the recent version of the package scam, available on the Comprehensive R Archive Network (CRAN).

In logistic regression modeling, Firth's modified estimator is widely used to address the issue of data separation, which results in the nonexistence of the maximum likelihood estimate. Firth's modified estimator can be formulated as a penalized maximum likelihood estimator in which Jeffreys' prior is adopted as the penalty term. Despite its widespread use in practice, the formal verification of the corresponding estimate's existence has not been established. In this study, we establish the existence theorem of Firth's modified estimate in binomial logistic regression models, assuming only the full column rankness of the design matrix. We also discuss other binomial regression models obtained through alternating link functions and prove the existence of similar penalized maximum likelihood estimates for such models.

We present a new algorithm for amortized inference in sparse probabilistic graphical models (PGMs), which we call $\Delta$-amortized inference ($\Delta$-AI). Our approach is based on the observation that when the sampling of variables in a PGM is seen as a sequence of actions taken by an agent, sparsity of the PGM enables local credit assignment in the agent's policy learning objective. This yields a local constraint that can be turned into a local loss in the style of generative flow networks (GFlowNets) that enables off-policy training but avoids the need to instantiate all the random variables for each parameter update, thus speeding up training considerably. The $\Delta$-AI objective matches the conditional distribution of a variable given its Markov blanket in a tractable learned sampler, which has the structure of a Bayesian network, with the same conditional distribution under the target PGM. As such, the trained sampler recovers marginals and conditional distributions of interest and enables inference of partial subsets of variables. We illustrate $\Delta$-AI's effectiveness for sampling from synthetic PGMs and training latent variable models with sparse factor structure.

In logistic regression modeling, Firth's modified estimator is widely used to address the issue of data separation, which results in the nonexistence of the maximum likelihood estimate. Firth's modified estimator can be formulated as a penalized maximum likelihood estimator in which Jeffreys' prior is adopted as the penalty term. Despite its widespread use in practice, the formal verification of the corresponding estimate's existence has not been established. In this study, we establish the existence theorem of Firth's modified estimate in binomial logistic regression models, assuming only the full column rankness of the design matrix. We also discuss multinomial logistic regression models. Unlike the binomial regression case, we show through an example that the Jeffreys-prior penalty term does not necessarily diverge to negative infinity as the parameter diverges.

We introduce a constructive analogue of $\Phi$-dimension, a notion of Hausdorff dimension developed using a restricted class of coverings of a set. A class of coverings $\Phi$ is said to be "faithful" to Hausdorff dimension if the $\Phi$-dimension and Hausdorff dimension coincide for every set. We prove a Point-to-Set Principle for $\Phi$-dimension, through which we get Point-to-Set Principles for Hausdorff Dimension, continued-fraction dimension and dimension of Cantor Coverings as special cases. Using the Point-to-Set Principle for Cantor coverings and a new technique for the construction of sequences satisfying a certain Kolmogorov complexity condition, we show that the notions of faithfulness of Cantor coverings at the Hausdorff and constructive levels are equivalent. We adapt the result by Albeverio, Ivanenko, Lebid, and Torbin to derive the necessary and sufficient conditions for the constructive dimension faithfulness of the coverings generated by the Cantor series expansion. This condition yields two general classes of representations of reals, one whose constructive dimensions that are equivalent to the constructive Hausdorff dimensions, and another, whose effective dimensions are different from the effective Hausdorff dimensions, completely classifying Cantor series expansions of reals.

北京阿比特科技有限公司