This report presents a practical approach to teaching quantum computing to Electrical Engineering & Computer Science (EECS) students through dedicated hands-on programming labs. The labs cover a diverse range of topics, encompassing fundamental elements, such as entanglement, quantum gates and circuits, as well as advanced algorithms including Quantum Key Distribution, Deutsch and Deutsch-Jozsa Algorithms, Simon's algorithm, and Grover's algorithm. As educators, we aim to share our teaching insights and resources with fellow instructors in the field. The full lab handouts and program templates are provided for interested instructors. Furthermore, the report elucidates the rationale behind the design of each experiment, enabling a deeper understanding of quantum computing.
We propose novel statistics which maximise the power of a two-sample test based on the Maximum Mean Discrepancy (MMD), by adapting over the set of kernels used in defining it. For finite sets, this reduces to combining (normalised) MMD values under each of these kernels via a weighted soft maximum. Exponential concentration bounds are proved for our proposed statistics under the null and alternative. We further show how these kernels can be chosen in a data-dependent but permutation-independent way, in a well-calibrated test, avoiding data splitting. This technique applies more broadly to general permutation-based MMD testing, and includes the use of deep kernels with features learnt using unsupervised models such as auto-encoders. We highlight the applicability of our MMD-FUSE test on both synthetic low-dimensional and real-world high-dimensional data, and compare its performance in terms of power against current state-of-the-art kernel tests.
Multi-choice Machine Reading Comprehension (MRC) is a major and challenging task for machines to answer questions according to provided options. Answers in multi-choice MRC cannot be directly extracted in the given passages, and essentially require machines capable of reasoning from accurate extracted evidence. However, the critical evidence may be as simple as just one word or phrase, while it is hidden in the given redundant, noisy passage with multiple linguistic hierarchies from phrase, fragment, sentence until the entire passage. We thus propose a novel general-purpose model enhancement which integrates multi-grained evidence comprehensively, named Multi-grained evidence inferencer (Mugen), to make up for the inability. Mugen extracts three different granularities of evidence: coarse-, middle- and fine-grained evidence, and integrates evidence with the original passages, achieving significant and consistent performance improvement on four multi-choice MRC benchmarks.
Deep learning accelerators address the computational demands of Deep Neural Networks (DNNs), departing from the traditional Von Neumann execution model. They leverage specialized hardware to align with the application domain's structure. Compilers for these accelerators face distinct challenges compared to those for general-purpose processors. These challenges include exposing and managing more micro-architectural features, handling software-managed scratch pads for on-chip storage, explicitly managing data movement, and matching DNN layers with varying hardware capabilities. These complexities necessitate a new approach to compiler design, as traditional compilers mainly focused on generating fine-grained instruction sequences while abstracting micro-architecture details. This paper introduces the Architecture Covenant Graph (ACG), an abstract representation of an architectural structure's components and their programmable capabilities. By enabling the compiler to work with the ACG, it allows for adaptable compilation workflows when making changes to accelerator design, reducing the need for a complete compiler redevelopment. Codelets, which express DNN operation functionality and evolve into execution mappings on the ACG, are key to this process. The Covenant compiler efficiently targets diverse deep learning accelerators, achieving 93.8% performance compared to state-of-the-art, hand-tuned DNN layer implementations when compiling 14 DNN layers from various models on two different architectures.
Neural Radiance Fields (NeRFs) have proven to be powerful 3D representations, capable of high quality novel view synthesis of complex scenes. While NeRFs have been applied to graphics, vision, and robotics, problems with slow rendering speed and characteristic visual artifacts prevent adoption in many use cases. In this work, we investigate combining an autoencoder (AE) with a NeRF, in which latent features (instead of colours) are rendered and then convolutionally decoded. The resulting latent-space NeRF can produce novel views with higher quality than standard colour-space NeRFs, as the AE can correct certain visual artifacts, while rendering over three times faster. Our work is orthogonal to other techniques for improving NeRF efficiency. Further, we can control the tradeoff between efficiency and image quality by shrinking the AE architecture, achieving over 13 times faster rendering with only a small drop in performance. We hope that our approach can form the basis of an efficient, yet high-fidelity, 3D scene representation for downstream tasks, especially when retaining differentiability is useful, as in many robotics scenarios requiring continual learning.
We design and analyze reinforcement learning algorithms for Graphon Mean-Field Games (GMFGs). In contrast to previous works that require the precise values of the graphons, we aim to learn the Nash Equilibrium (NE) of the regularized GMFGs when the graphons are unknown. Our contributions are threefold. First, we propose the Proximal Policy Optimization for GMFG (GMFG-PPO) algorithm and show that it converges at a rate of $O(T^{-1/3})$ after $T$ iterations with an estimation oracle, improving on a previous work by Xie et al. (ICML, 2021). Second, using kernel embedding of distributions, we design efficient algorithms to estimate the transition kernels, reward functions, and graphons from sampled agents. Convergence rates are then derived when the positions of the agents are either known or unknown. Results for the combination of the optimization algorithm GMFG-PPO and the estimation algorithm are then provided. These algorithms are the first specifically designed for learning graphons from sampled agents. Finally, the efficacy of the proposed algorithms are corroborated through simulations. These simulations demonstrate that learning the unknown graphons reduces the exploitability effectively.
Virtual Reality (VR) can support effective and scalable training of psychomotor skills in manufacturing. However, many industry training modules offer experiences that are close-ended and do not allow for human error. We aim to address this gap in VR training tools for psychomotor skills training by exploring an open-ended approach to the system design. We designed a VR training simulation prototype to perform open-ended practice of drilling using a 3-axis milling machine. The simulation employs near "end-to-end" instruction through a safety module, a setup and drilling tutorial, open-ended practice complete with warnings of mistakes and failures, and a function to assess the geometries and locations of drilled holes against an engineering drawing. We developed and conducted a user study within an undergraduate-level introductory fabrication course to investigate the impact of open-ended VR practice on learning outcomes. Study results reveal positive trends, with the VR group successfully completing the machining task of drilling at a higher rate (75% vs 64%), with fewer mistakes (1.75 vs 2.14 score), and in less time (17.67 mins vs 21.57 mins) compared to the control group. We discuss our findings and limitations and implications for the design of open-ended VR training systems for learning psychomotor skills.
Owing to the recent developments in Generative Artificial Intelligence (GenAI) and Large Language Models (LLM), conversational agents are becoming increasingly popular and accepted. They provide a human touch by interacting in ways familiar to us and by providing support as virtual companions. Therefore, it is important to understand the user's emotions in order to respond considerately. Compared to the standard problem of emotion recognition, conversational agents face an additional constraint in that recognition must be real-time. Studies on model architectures using audio, visual, and textual modalities have mainly focused on emotion classification using full video sequences that do not provide online features. In this work, we present a novel paradigm for contextualized Emotion Recognition using Graph Convolutional Network with Reinforcement Learning (conER-GRL). Conversations are partitioned into smaller groups of utterances for effective extraction of contextual information. The system uses Gated Recurrent Units (GRU) to extract multimodal features from these groups of utterances. More importantly, Graph Convolutional Networks (GCN) and Reinforcement Learning (RL) agents are cascade trained to capture the complex dependencies of emotion features in interactive scenarios. Comparing the results of the conER-GRL model with other state-of-the-art models on the benchmark dataset IEMOCAP demonstrates the advantageous capabilities of the conER-GRL architecture in recognizing emotions in real-time from multimodal conversational signals.
Deep learning has become the dominant approach in coping with various tasks in Natural LanguageProcessing (NLP). Although text inputs are typically represented as a sequence of tokens, there isa rich variety of NLP problems that can be best expressed with a graph structure. As a result, thereis a surge of interests in developing new deep learning techniques on graphs for a large numberof NLP tasks. In this survey, we present a comprehensive overview onGraph Neural Networks(GNNs) for Natural Language Processing. We propose a new taxonomy of GNNs for NLP, whichsystematically organizes existing research of GNNs for NLP along three axes: graph construction,graph representation learning, and graph based encoder-decoder models. We further introducea large number of NLP applications that are exploiting the power of GNNs and summarize thecorresponding benchmark datasets, evaluation metrics, and open-source codes. Finally, we discussvarious outstanding challenges for making the full use of GNNs for NLP as well as future researchdirections. To the best of our knowledge, this is the first comprehensive overview of Graph NeuralNetworks for Natural Language Processing.
In this paper, we propose a novel Feature Decomposition and Reconstruction Learning (FDRL) method for effective facial expression recognition. We view the expression information as the combination of the shared information (expression similarities) across different expressions and the unique information (expression-specific variations) for each expression. More specifically, FDRL mainly consists of two crucial networks: a Feature Decomposition Network (FDN) and a Feature Reconstruction Network (FRN). In particular, FDN first decomposes the basic features extracted from a backbone network into a set of facial action-aware latent features to model expression similarities. Then, FRN captures the intra-feature and inter-feature relationships for latent features to characterize expression-specific variations, and reconstructs the expression feature. To this end, two modules including an intra-feature relation modeling module and an inter-feature relation modeling module are developed in FRN. Experimental results on both the in-the-lab databases (including CK+, MMI, and Oulu-CASIA) and the in-the-wild databases (including RAF-DB and SFEW) show that the proposed FDRL method consistently achieves higher recognition accuracy than several state-of-the-art methods. This clearly highlights the benefit of feature decomposition and reconstruction for classifying expressions.
Few-shot Knowledge Graph (KG) completion is a focus of current research, where each task aims at querying unseen facts of a relation given its few-shot reference entity pairs. Recent attempts solve this problem by learning static representations of entities and references, ignoring their dynamic properties, i.e., entities may exhibit diverse roles within task relations, and references may make different contributions to queries. This work proposes an adaptive attentional network for few-shot KG completion by learning adaptive entity and reference representations. Specifically, entities are modeled by an adaptive neighbor encoder to discern their task-oriented roles, while references are modeled by an adaptive query-aware aggregator to differentiate their contributions. Through the attention mechanism, both entities and references can capture their fine-grained semantic meanings, and thus render more expressive representations. This will be more predictive for knowledge acquisition in the few-shot scenario. Evaluation in link prediction on two public datasets shows that our approach achieves new state-of-the-art results with different few-shot sizes.