Non-asymptotic convergence analysis of quasi-Newton methods has gained attention with a landmark result establishing an explicit superlinear rate of O$((1/\sqrt{t})^t)$. The methods that obtain this rate, however, exhibit a well-known drawback: they require the storage of the previous Hessian approximation matrix or instead storing all past curvature information to form the current Hessian inverse approximation. Limited-memory variants of quasi-Newton methods such as the celebrated L-BFGS alleviate this issue by leveraging a limited window of past curvature information to construct the Hessian inverse approximation. As a result, their per iteration complexity and storage requirement is O$(\tau d)$ where $\tau \le d$ is the size of the window and $d$ is the problem dimension reducing the O$(d^2)$ computational cost and memory requirement of standard quasi-Newton methods. However, to the best of our knowledge, there is no result showing a non-asymptotic superlinear convergence rate for any limited-memory quasi-Newton method. In this work, we close this gap by presenting a limited-memory greedy BFGS (LG-BFGS) method that achieves an explicit non-asymptotic superlinear rate. We incorporate displacement aggregation, i.e., decorrelating projection, in post-processing gradient variations, together with a basis vector selection scheme on variable variations, which greedily maximizes a progress measure of the Hessian estimate to the true Hessian. Their combination allows past curvature information to remain in a sparse subspace while yielding a valid representation of the full history. Interestingly, our established non-asymptotic superlinear convergence rate demonstrates a trade-off between the convergence speed and memory requirement, which to our knowledge, is the first of its kind. Numerical results corroborate our theoretical findings and demonstrate the effectiveness of our method.
The paper proposes a novel End-to-End Learning and Repair (E2ELR) architecture for training optimization proxies for economic dispatch problems. E2ELR combines deep neural networks with closed-form, differentiable repair layers, thereby integrating learning and feasibility in an end-to-end fashion. E2ELR is also trained with self-supervised learning, removing the need for labeled data and the solving of numerous optimization problems offline. E2ELR is evaluated on industry-size power grids with tens of thousands of buses using an economic dispatch that co-optimizes energy and reserves. The results demonstrate that the self-supervised E2ELR achieves state-of-the-art performance, with optimality gaps that outperform other baselines by at least an order of magnitude.
In the realm of facial analysis, accurate landmark detection is crucial for various applications, ranging from face recognition and expression analysis to animation. Conventional heatmap or coordinate regression-based techniques, however, often face challenges in terms of computational burden and quantization errors. To address these issues, we present the KeyPoint Positioning System (KeyPosS) - a groundbreaking facial landmark detection framework that stands out from existing methods. The framework utilizes a fully convolutional network to predict a distance map, which computes the distance between a Point of Interest (POI) and multiple anchor points. These anchor points are ingeniously harnessed to triangulate the POI's position through the True-range Multilateration algorithm. Notably, the plug-and-play nature of KeyPosS enables seamless integration into any decoding stage, ensuring a versatile and adaptable solution. We conducted a thorough evaluation of KeyPosS's performance by benchmarking it against state-of-the-art models on four different datasets. The results show that KeyPosS substantially outperforms leading methods in low-resolution settings while requiring a minimal time overhead. The code is available at //github.com/zhiqic/KeyPosS.
Linkage analysis has provided valuable insights to the GWAS studies, particularly in revealing that SNPs in linkage disequilibrium (LD) can jointly influence disease phenotypes. However, the potential of LD network data has often been overlooked or underutilized in the literature. In this paper, we propose a locally adaptive structure learning algorithm (LASLA) that provides a principled and generic framework for incorporating network data or multiple samples of auxiliary data from related source domains; possibly in different dimensions/structures and from diverse populations. LASLA employs a $p$-value weighting approach, utilizing structural insights to assign data-driven weights to individual test points. Theoretical analysis shows that LASLA can asymptotically control FDR with independent or weakly dependent primary statistics, and achieve higher power when the network data is informative. Efficiency again of LASLA is illustrated through various synthetic experiments and an application to T2D-associated SNP identification.
Text-to-image synthesis has made encouraging progress and attracted lots of public attention recently. However, popular evaluation metrics in this area, like the Inception Score and Fr'echet Inception Distance, incur several issues. First of all, they cannot explicitly assess the perceptual quality of generated images and poorly reflect the semantic alignment of each text-image pair. Also, they are inefficient and need to sample thousands of images to stabilise their evaluation results. In this paper, we propose to evaluate text-to-image generation performance by directly estimating the likelihood of the generated images using a pre-trained likelihood-based text-to-image generative model, i.e., a higher likelihood indicates better perceptual quality and better text-image alignment. To prevent the likelihood of being dominated by the non-crucial part of the generated image, we propose several new designs to develop a credit assignment strategy based on the semantic and perceptual significance of the image patches. In the experiments, we evaluate the proposed metric on multiple popular text-to-image generation models and datasets in accessing both the perceptual quality and the text-image alignment. Moreover, it can successfully assess the generation ability of these models with as few as a hundred samples, making it very efficient in practice.
We propose an agglomerative Transformer (AGER) that enables Transformer-based human-object interaction (HOI) detectors to flexibly exploit extra instance-level cues in a single-stage and end-to-end manner for the first time. AGER acquires instance tokens by dynamically clustering patch tokens and aligning cluster centers to instances with textual guidance, thus enjoying two benefits: 1) Integrality: each instance token is encouraged to contain all discriminative feature regions of an instance, which demonstrates a significant improvement in the extraction of different instance-level cues and subsequently leads to a new state-of-the-art performance of HOI detection with 36.75 mAP on HICO-Det. 2) Efficiency: the dynamical clustering mechanism allows AGER to generate instance tokens jointly with the feature learning of the Transformer encoder, eliminating the need of an additional object detector or instance decoder in prior methods, thus allowing the extraction of desirable extra cues for HOI detection in a single-stage and end-to-end pipeline. Concretely, AGER reduces GFLOPs by 8.5% and improves FPS by 36%, even compared to a vanilla DETR-like pipeline without extra cue extraction.
Conventional keyword search systems operate on automatic speech recognition (ASR) outputs, which causes them to have a complex indexing and search pipeline. This has led to interest in ASR-free approaches to simplify the search procedure. We recently proposed a neural ASR-free keyword search model which achieves competitive performance while maintaining an efficient and simplified pipeline, where queries and documents are encoded with a pair of recurrent neural network encoders and the encodings are combined with a dot-product. In this article, we extend this work with multilingual pretraining and detailed analysis of the model. Our experiments show that the proposed multilingual training significantly improves the model performance and that despite not matching a strong ASR-based conventional keyword search system for short queries and queries comprising in-vocabulary words, the proposed model outperforms the ASR-based system for long queries and queries that do not appear in the training data.
Electronic exams (e-exams) have the potential to substantially reduce the effort required for conducting an exam through automation. Yet, care must be taken to sacrifice neither task complexity nor constructive alignment nor grading fairness in favor of automation. To advance automation in the design and fair grading of (functional programming) e-exams, we introduce the following: A novel algorithm to check Proof Puzzles based on finding correct sequences of proof lines that improves fairness compared to an existing, edit distance based algorithm; an open-source static analysis tool to check source code for task relevant features by traversing the abstract syntax tree; a higher-level language and open-source tool to specify regular expressions that makes creating complex regular expressions less error-prone. Our findings are embedded in a complete experience report on transforming a paper exam to an e-exam. We evaluated the resulting e-exam by analyzing the degree of automation in the grading process, asking students for their opinion, and critically reviewing our own experiences. Almost all tasks can be graded automatically at least in part (correct solutions can almost always be detected as such), the students agree that an e-exam is a fitting examination format for the course but are split on how well they can express their thoughts compared to a paper exam, and examiners enjoy a more time-efficient grading process while the point distribution in the exam results was almost exactly the same compared to a paper exam.
The accurate and interpretable prediction of future events in time-series data often requires the capturing of representative patterns (or referred to as states) underpinning the observed data. To this end, most existing studies focus on the representation and recognition of states, but ignore the changing transitional relations among them. In this paper, we present evolutionary state graph, a dynamic graph structure designed to systematically represent the evolving relations (edges) among states (nodes) along time. We conduct analysis on the dynamic graphs constructed from the time-series data and show that changes on the graph structures (e.g., edges connecting certain state nodes) can inform the occurrences of events (i.e., time-series fluctuation). Inspired by this, we propose a novel graph neural network model, Evolutionary State Graph Network (EvoNet), to encode the evolutionary state graph for accurate and interpretable time-series event prediction. Specifically, Evolutionary State Graph Network models both the node-level (state-to-state) and graph-level (segment-to-segment) propagation, and captures the node-graph (state-to-segment) interactions over time. Experimental results based on five real-world datasets show that our approach not only achieves clear improvements compared with 11 baselines, but also provides more insights towards explaining the results of event predictions.
Conventional methods for object detection typically require a substantial amount of training data and preparing such high-quality training data is very labor-intensive. In this paper, we propose a novel few-shot object detection network that aims at detecting objects of unseen categories with only a few annotated examples. Central to our method are our Attention-RPN, Multi-Relation Detector and Contrastive Training strategy, which exploit the similarity between the few shot support set and query set to detect novel objects while suppressing false detection in the background. To train our network, we contribute a new dataset that contains 1000 categories of various objects with high-quality annotations. To the best of our knowledge, this is one of the first datasets specifically designed for few-shot object detection. Once our few-shot network is trained, it can detect objects of unseen categories without further training or fine-tuning. Our method is general and has a wide range of potential applications. We produce a new state-of-the-art performance on different datasets in the few-shot setting. The dataset link is //github.com/fanq15/Few-Shot-Object-Detection-Dataset.
Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis, thereby allowing manual manipulation in predicting the final answer.