亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Developing computational pathology models is essential for reducing manual tissue typing from whole slide images, transferring knowledge from the source domain to an unlabeled, shifted target domain, and identifying unseen categories. We propose a practical setting by addressing the above-mentioned challenges in one fell swoop, i.e., source-free open-set domain adaptation. Our methodology focuses on adapting a pre-trained source model to an unlabeled target dataset and encompasses both closed-set and open-set classes. Beyond addressing the semantic shift of unknown classes, our framework also deals with a covariate shift, which manifests as variations in color appearance between source and target tissue samples. Our method hinges on distilling knowledge from a self-supervised vision transformer (ViT), drawing guidance from either robustly pre-trained transformer models or histopathology datasets, including those from the target domain. In pursuit of this, we introduce a novel style-based adversarial data augmentation, serving as hard positives for self-training a ViT, resulting in highly contextualized embeddings. Following this, we cluster semantically akin target images, with the source model offering weak pseudo-labels, albeit with uncertain confidence. To enhance this process, we present the closed-set affinity score (CSAS), aiming to correct the confidence levels of these pseudo-labels and to calculate weighted class prototypes within the contextualized embedding space. Our approach establishes itself as state-of-the-art across three public histopathological datasets for colorectal cancer assessment. Notably, our self-training method seamlessly integrates with open-set detection methods, resulting in enhanced performance in both closed-set and open-set recognition tasks.

相關內容

The heightened emphasis on the regulation of deep generative models, propelled by escalating concerns pertaining to privacy and compliance with regulatory frameworks, underscores the imperative need for precise control mechanisms over these models. This urgency is particularly underscored by instances in which generative models generate outputs that encompass objectionable, offensive, or potentially injurious content. In response, machine unlearning has emerged to selectively forget specific knowledge or remove the influence of undesirable data subsets from pre-trained models. However, modern machine unlearning approaches typically assume access to model parameters and architectural details during unlearning, which is not always feasible. In multitude of downstream tasks, these models function as black-box systems, with inaccessible pre-trained parameters, architectures, and training data. In such scenarios, the possibility of filtering undesired outputs becomes a practical alternative. The primary goal of this study is twofold: first, to elucidate the relationship between filtering and unlearning processes, and second, to formulate a methodology aimed at mitigating the display of undesirable outputs generated from models characterized as black-box systems. Theoretical analysis in this study demonstrates that, in the context of black-box models, filtering can be seen as a form of weak unlearning. Our proposed \textbf{\textit{Feature Aware Similarity Thresholding(FAST)}} method effectively suppresses undesired outputs by systematically encoding the representation of unwanted features in the latent space.

Graph anomaly detection is crucial for identifying nodes that deviate from regular behavior within graphs, benefiting various domains such as fraud detection and social network. Although existing reconstruction-based methods have achieved considerable success, they may face the \textit{Anomaly Overfitting} and \textit{Homophily Trap} problems caused by the abnormal patterns in the graph, breaking the assumption that normal nodes are often better reconstructed than abnormal ones. Our observations indicate that models trained on graphs with fewer anomalies exhibit higher detection performance. Based on this insight, we introduce a novel two-stage framework called Anomaly-Denoised Autoencoders for Graph Anomaly Detection (ADA-GAD). In the first stage, we design a learning-free anomaly-denoised augmentation method to generate graphs with reduced anomaly levels. We pretrain graph autoencoders on these augmented graphs at multiple levels, which enables the graph autoencoders to capture normal patterns. In the next stage, the decoders are retrained for detection on the original graph, benefiting from the multi-level representations learned in the previous stage. Meanwhile, we propose the node anomaly distribution regularization to further alleviate \textit{Anomaly Overfitting}. We validate the effectiveness of our approach through extensive experiments on both synthetic and real-world datasets.

We present a neural network for mitigating biased errors in pseudoranges to improve localization performance with data collected from mobile phones. A satellite-wise Multilayer Perceptron (MLP) is designed to regress the pseudorange bias correction from six satellite, receiver, context-related features derived from Android raw Global Navigation Satellite System (GNSS) measurements. To train the MLP, we carefully calculate the target values of pseudorange bias using location ground truth and smoothing techniques and optimize a loss function involving the estimation residuals of smartphone clock bias. The corrected pseudoranges are then used by a model-based localization engine to compute locations. The Google Smartphone Decimeter Challenge (GSDC) dataset, which contains Android smartphone data collected from both rural and urban areas, is utilized for evaluation. Both fingerprinting and cross-trace localization results demonstrate that our proposed method outperforms model-based and state-of-the-art data-driven approaches.

When handling streaming graphs, existing graph representation learning models encounter a catastrophic forgetting problem, where previously learned knowledge of these models is easily overwritten when learning with newly incoming graphs. In response, Continual Graph Learning emerges as a novel paradigm enabling graph representation learning from static to streaming graphs. Our prior work, CaT is a replay-based framework with a balanced continual learning procedure, which designs a small yet effective memory bank for replaying data by condensing incoming graphs. Although the CaT alleviates the catastrophic forgetting problem, there exist three issues: (1) The graph condensation algorithm derived in CaT only focuses on labelled nodes while neglecting abundant information carried by unlabelled nodes; (2) The continual training scheme of the CaT overemphasises on the previously learned knowledge, limiting the model capacity to learn from newly added memories; (3) Both the condensation process and replaying process of the CaT are time-consuming. In this paper, we propose a psudo-label guided memory bank (PUMA) CGL framework, extending from the CaT to enhance its efficiency and effectiveness by overcoming the above-mentioned weaknesses and limits. To fully exploit the information in a graph, PUMA expands the coverage of nodes during graph condensation with both labelled and unlabelled nodes. Furthermore, a training-from-scratch strategy is proposed to upgrade the previous continual learning scheme for a balanced training between the historical and the new graphs. Besides, PUMA uses a one-time prorogation and wide graph encoders to accelerate the graph condensation and the graph encoding process in the training stage to improve the efficiency of the whole framework. Extensive experiments on four datasets demonstrate the state-of-the-art performance and efficiency over existing methods.

There has been growing demands in the dynamic graph, in which a continuous stream of graph updates is mixed with graph computation. For the above scenarios, the compact physically continuous structures and the dispersed but logically continuous structures become the two ends of the scale. In principle, the Pointers become the weights. The number of them determines which side of the scale the data structure leans towards. The Pointers make it easier to update the graph but they will result in poor cache locality. This paper presents SoCo, a graph storage and software prefetch co-design for dynamic graph processing that significantly improves on both graph updating and graph computation. We utilize C++20 coroutines and software prefetching techniques to optimize cache miss overhead during computation, and design a data structure that not only meets the requirements of dynamic graph processing but is also more suitable for prefetching. We also conduct extensive experiments on different datasets and show that SoCo could outperform state-of-the-arts by 10.48x on average and at the same time guarantee a pioneer insertion performance (1st place in 5 cases and 2nd place in 2 cases).

Multi-agent trajectory prediction, as a critical task in modeling complex interactions of objects in dynamic systems, has attracted significant research attention in recent years. Despite the promising advances, existing studies all follow the assumption that data distribution observed during model learning matches that encountered in real-world deployments. However, this assumption often does not hold in practice, as inherent distribution shifts might exist in the mobility patterns for deployment environments, thus leading to poor domain generalization and performance degradation. Consequently, it is appealing to leverage trajectories from multiple source domains to mitigate such discrepancies for multi-agent trajectory prediction task. However, the development of multi-source domain generalization in this task presents two notable issues: (1) negative transfer; (2) inadequate modeling for external factors. To address these issues, we propose a new causal formulation to explicitly model four types of features: domain-invariant and domain-specific features for both the focal agent and neighboring agents. Building upon the new formulation, we propose AdapTraj, a multi-source domain generalization framework specifically tailored for multi-agent trajectory prediction. AdapTraj serves as a plug-and-play module that is adaptable to a variety of models. Extensive experiments on four datasets with different domains demonstrate that AdapTraj consistently outperforms other baselines by a substantial margin.

Fine-grained image analysis (FGIA) is a longstanding and fundamental problem in computer vision and pattern recognition, and underpins a diverse set of real-world applications. The task of FGIA targets analyzing visual objects from subordinate categories, e.g., species of birds or models of cars. The small inter-class and large intra-class variation inherent to fine-grained image analysis makes it a challenging problem. Capitalizing on advances in deep learning, in recent years we have witnessed remarkable progress in deep learning powered FGIA. In this paper we present a systematic survey of these advances, where we attempt to re-define and broaden the field of FGIA by consolidating two fundamental fine-grained research areas -- fine-grained image recognition and fine-grained image retrieval. In addition, we also review other key issues of FGIA, such as publicly available benchmark datasets and related domain-specific applications. We conclude by highlighting several research directions and open problems which need further exploration from the community.

Conventionally, spatiotemporal modeling network and its complexity are the two most concentrated research topics in video action recognition. Existing state-of-the-art methods have achieved excellent accuracy regardless of the complexity meanwhile efficient spatiotemporal modeling solutions are slightly inferior in performance. In this paper, we attempt to acquire both efficiency and effectiveness simultaneously. First of all, besides traditionally treating H x W x T video frames as space-time signal (viewing from the Height-Width spatial plane), we propose to also model video from the other two Height-Time and Width-Time planes, to capture the dynamics of video thoroughly. Secondly, our model is designed based on 2D CNN backbones and model complexity is well kept in mind by design. Specifically, we introduce a novel multi-view fusion (MVF) module to exploit video dynamics using separable convolution for efficiency. It is a plug-and-play module and can be inserted into off-the-shelf 2D CNNs to form a simple yet effective model called MVFNet. Moreover, MVFNet can be thought of as a generalized video modeling framework and it can specialize to be existing methods such as C2D, SlowOnly, and TSM under different settings. Extensive experiments are conducted on popular benchmarks (i.e., Something-Something V1 & V2, Kinetics, UCF-101, and HMDB-51) to show its superiority. The proposed MVFNet can achieve state-of-the-art performance with 2D CNN's complexity.

Visual dialogue is a challenging task that needs to extract implicit information from both visual (image) and textual (dialogue history) contexts. Classical approaches pay more attention to the integration of the current question, vision knowledge and text knowledge, despising the heterogeneous semantic gaps between the cross-modal information. In the meantime, the concatenation operation has become de-facto standard to the cross-modal information fusion, which has a limited ability in information retrieval. In this paper, we propose a novel Knowledge-Bridge Graph Network (KBGN) model by using graph to bridge the cross-modal semantic relations between vision and text knowledge in fine granularity, as well as retrieving required knowledge via an adaptive information selection mode. Moreover, the reasoning clues for visual dialogue can be clearly drawn from intra-modal entities and inter-modal bridges. Experimental results on VisDial v1.0 and VisDial-Q datasets demonstrate that our model outperforms exiting models with state-of-the-art results.

We propose a novel attention gate (AG) model for medical imaging that automatically learns to focus on target structures of varying shapes and sizes. Models trained with AGs implicitly learn to suppress irrelevant regions in an input image while highlighting salient features useful for a specific task. This enables us to eliminate the necessity of using explicit external tissue/organ localisation modules of cascaded convolutional neural networks (CNNs). AGs can be easily integrated into standard CNN architectures such as the U-Net model with minimal computational overhead while increasing the model sensitivity and prediction accuracy. The proposed Attention U-Net architecture is evaluated on two large CT abdominal datasets for multi-class image segmentation. Experimental results show that AGs consistently improve the prediction performance of U-Net across different datasets and training sizes while preserving computational efficiency. The code for the proposed architecture is publicly available.

北京阿比特科技有限公司