亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We outline how to create a mechanism that provides an optimal way to elicit, from an arbitrary group of experts, the probability of the truth of an arbitrary logical proposition together with collective information that has an explicit form and interprets this probability. Namely, we provide strong arguments for the possibility of the development of a self-resolving prediction market with play money that incentivizes direct information exchange between experts. Such a system could, in particular, motivate simultaneously many experts to collectively solve scientific or medical problems in a very efficient manner. We also note that in our considerations, experts are not assumed to be Bayesian.

相關內容

《計算機信息》雜志發表高質量的論文,擴大了運籌學和計算的范圍,尋求有關理論、方法、實驗、系統和應用方面的原創研究論文、新穎的調查和教程論文,以及描述新的和有用的軟件工具的論文。官網鏈接: · 儲層計算 · 稀疏 · Processing(編程語言) · Pivotal(公司) ·
2023 年 10 月 18 日

In this document, we present key findings in structured matrix approximation theory, with applications to the regressive representation of dynamic financial processes. Initially, we explore a comprehensive approach involving generic nonlinear time delay embedding for time series data extracted from a financial or economic system under examination. Subsequently, we employ sparse least-squares and structured matrix approximation methods to discern approximate representations of the output coupling matrices. These representations play a pivotal role in establishing the regressive models corresponding to the recursive structures inherent in a given financial system. The document further introduces prototypical algorithms that leverage the aforementioned techniques. These algorithms are demonstrated through applications in approximate identification and predictive simulation of dynamic financial and economic processes, encompassing scenarios that may or may not exhibit chaotic behavior.

Over the past two decades, some scholars have noticed the correlation between quantum mechanics and finance/economy, making some novel attempts to introduce the theoretical framework of quantum mechanics into financial and economic research, subsequently a new research domain called quantum finance or quantum economy was set up. In particular, some studies have made their endeavour in the stock market, utilizing the quantum mechanical paradigm to describe the movement of stock price. Nevertheless, the majority of researches have paid attention to describing the motion of a single stock, and drawn an analogy between the motion of a single stock and a one-dimensional infinite well, or one-dimensional harmonic oscillator model, whose modality looks alike to the one-electron Schr\"odinger equation, in which the information is solved analytically in most cases. Hitherto, the whole stock market system composed of all stocks and stock indexes have not been discussed. In this paper, the concept of stock molecular system is first proposed with pioneer. The modality of stock molecular system resembles the multi-electrons Schr\"odinger equation with Born-Oppenheimer approximation. Similar to the interaction among all nuclei and electrons in a molecule, the interaction exist among all stock indexes and stocks. This paper also establish the stock-index Coulomb potential, stock-index Coulomb potential, stock-stock Coulomb potential and stock coulomb correlation terms by statistical theory. At length, the conceive and feasibility of drawing upon density functional theory (DFT) to solve the Schr\"odinger equation of stock molecular system are put forward together with proof, ending up with experiments executed in CSI 300 index system.

Vintage factor analysis is one important type of factor analysis that aims to first find a low-dimensional representation of the original data, and then to seek a rotation such that the rotated low-dimensional representation is scientifically meaningful. Perhaps the most widely used vintage factor analysis is the Principal Component Analysis (PCA) followed by the varimax rotation. Despite its popularity, little theoretical guarantee can be provided mainly because varimax rotation requires to solve a non-convex optimization over the set of orthogonal matrices. In this paper, we propose a deflation varimax procedure that solves each row of an orthogonal matrix sequentially. In addition to its net computational gain and flexibility, we are able to fully establish theoretical guarantees for the proposed procedure in a broad context. Adopting this new varimax approach as the second step after PCA, we further analyze this two step procedure under a general class of factor models. Our results show that it estimates the factor loading matrix in the optimal rate when the signal-to-noise-ratio (SNR) is moderate or large. In the low SNR regime, we offer possible improvement over using PCA and the deflation procedure when the additive noise under the factor model is structured. The modified procedure is shown to be optimal in all SNR regimes. Our theory is valid for finite sample and allows the number of the latent factors to grow with the sample size as well as the ambient dimension to grow with, or even exceed, the sample size. Extensive simulation and real data analysis further corroborate our theoretical findings.

The categorical Gini correlation, $\rho_g$, was proposed by Dang et al. to measure the dependence between a categorical variable, $Y$ , and a numerical variable, $X$. It has been shown that $\rho_g$ has more appealing properties than current existing dependence measurements. In this paper, we develop the jackknife empirical likelihood (JEL) method for $\rho_g$. Confidence intervals for the Gini correlation are constructed without estimating the asymptotic variance. Adjusted and weighted JEL are explored to improve the performance of the standard JEL. Simulation studies show that our methods are competitive to existing methods in terms of coverage accuracy and shortness of confidence intervals. The proposed methods are illustrated in an application on two real datasets.

We numerically investigate the possibility of defining stabilization-free Virtual Element (VEM) discretizations of advection-diffusion problems in the advection-dominated regime. To this end, we consider a SUPG stabilized formulation of the scheme. Numerical tests comparing the proposed method with standard VEM show that the lack of an additional arbitrary stabilization term, typical of VEM schemes, that adds artificial diffusion to the discrete solution, allows to better approximate boundary layers, in particular in the case of a low order scheme.

We present an algorithm for computing melting points by autonomously learning from coexistence simulations in the NPT ensemble. Given the interatomic interaction model, the method makes decisions regarding the number of atoms and temperature at which to conduct simulations, and based on the collected data predicts the melting point along with the uncertainty, which can be systematically improved with more data. We demonstrate how incorporating physical models of the solid-liquid coexistence evolution enhances the algorithm's accuracy and enables optimal decision-making to effectively reduce predictive uncertainty. To validate our approach, we compare the results of 20 melting point calculations from the literature to the results of our calculations, all conducted with same interatomic potentials. Remarkably, we observe significant deviations in about one-third of the cases, underscoring the need for accurate and reliable algorithms for materials property calculations.

We introduce the extremal range, a local statistic for studying the spatial extent of extreme events in random fields on $\mathbb{R}^2$. Conditioned on exceedance of a high threshold at a location $s$, the extremal range at $s$ is the random variable defined as the smallest distance from $s$ to a location where there is a non-exceedance. We leverage tools from excursion-set theory to study distributional properties of the extremal range, propose parametric models and predict the median extremal range at extreme threshold levels. The extremal range captures the rate at which the spatial extent of conditional extreme events scales for increasingly high thresholds, and we relate its distributional properties with the bivariate tail dependence coefficient and the extremal index of time series in classical Extreme-Value Theory. Consistent estimation of the distribution function of the extremal range for stationary random fields is proven. For non-stationary random fields, we implement generalized additive median regression to predict extremal-range maps at very high threshold levels. An application to two large daily temperature datasets, namely reanalyses and climate-model simulations for France, highlights decreasing extremal dependence for increasing threshold levels and reveals strong differences in joint tail decay rates between reanalyses and simulations.

We consider uncertainty quantification for the Poisson problem subject to domain uncertainty. For the stochastic parameterization of the random domain, we use the model recently introduced by Kaarnioja, Kuo, and Sloan (SIAM J. Numer. Anal., 2020) in which a countably infinite number of independent random variables enter the random field as periodic functions. We develop lattice quasi-Monte Carlo (QMC) cubature rules for computing the expected value of the solution to the Poisson problem subject to domain uncertainty. These QMC rules can be shown to exhibit higher order cubature convergence rates permitted by the periodic setting independently of the stochastic dimension of the problem. In addition, we present a complete error analysis for the problem by taking into account the approximation errors incurred by truncating the input random field to a finite number of terms and discretizing the spatial domain using finite elements. The paper concludes with numerical experiments demonstrating the theoretical error estimates.

Approximation of high-dimensional functions is a problem in many scientific fields that is only feasible if advantageous structural properties, such as sparsity in a given basis, can be exploited. A relevant tool for analysing sparse approximations is Stechkin's lemma. In its standard form, however, this lemma does not allow to explain convergence rates for a wide range of relevant function classes. This work presents a new weighted version of Stechkin's lemma that improves the best $n$-term rates for weighted $\ell^p$-spaces and associated function classes such as Sobolev or Besov spaces. For the class of holomorphic functions, which occur as solutions of common high-dimensional parameter-dependent PDEs, we recover exponential rates that are not directly obtainable with Stechkin's lemma. Since weighted $\ell^p$-summability induces weighted sparsity, compressed sensing algorithms can be used to approximate the associated functions. To break the curse of dimensionality, which these algorithms suffer, we recall that sparse approximations can be encoded efficiently using tensor networks with sparse component tensors. We also demonstrate that weighted $\ell^p$-summability induces low ranks, which motivates a second tensor train format with low ranks and a single weighted sparse core. We present new alternating algorithms for best $n$-term approximation in both formats. To analyse the sample complexity for the new model classes, we derive a novel result of independent interest that allows the transfer of the restricted isometry property from one set to another sufficiently close set. Although they lead up to the analysis of our final model class, our contributions on weighted Stechkin and the restricted isometry property are of independent interest and can be read independently.

A key challenge when trying to understand innovation is that it is a dynamic, ongoing process, which can be highly contingent on ephemeral factors such as culture, economics, or luck. This means that any analysis of the real-world process must necessarily be historical - and thus probably too late to be most useful - but also cannot be sure what the properties of the web of connections between innovations is or was. Here I try to address this by designing and generating a set of synthetic innovation web "dictionaries" that can be used to host sampled innovation timelines, probe the overall statistics and behaviours of these processes, and determine the degree of their reliance on the structure or generating algorithm. Thus, inspired by the work of Fink, Reeves, Palma and Farr (2017) on innovation in language, gastronomy, and technology, I study how new symbol discovery manifests itself in terms of additional "word" vocabulary being available from dictionaries generated from a finite number of symbols. Several distinct dictionary generation models are investigated using numerical simulation, with emphasis on the scaling of knowledge as dictionary generators and parameters are varied, and the role of which order the symbols are discovered in.

北京阿比特科技有限公司