亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Over the last five decades, we have seen strong methodological advances in survival analysis, mainly in two separate strands: One strand is based on a parametric approach that assumes some response distribution. More prominent, however, is the strand of flexible methods which rely mainly on non-/semi-parametric estimation. As the methodological landscape continues to evolve, the task of navigating through the multitude of methods and identifying corresponding available software resources is becoming increasingly difficult. This task becomes particularly challenging in more complex scenarios, such as when dealing with interval-censored or clustered survival data, non-proportionality, or dependent censoring. In this tutorial, we explore the potential of using smooth transformation models for survival analysis in the R system for statistical computing. These models provide a unified maximum likelihood framework that covers a range of survival models, including well-established ones such as the Weibull model and a fully parameterised version of the famous Cox proportional hazards model, as well as extensions to more complex scenarios. We explore smooth transformation models for non-proportional/crossing hazards, dependent censoring, clustered observations and extensions towards personalised medicine within this framework. By fitting these models to survival data from a two-arm randomised controlled trial on rectal cancer therapy, we demonstrate how survival analysis tasks can be seamlessly navigated within the smooth transformation model framework in R. This is achieved by the implementation provided by the "tram" package and few related packages.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · Agent · 回合 · AI · 估計/估計量 ·
2024 年 3 月 22 日

With the advancements of artificial intelligence (AI), we're seeing more scenarios that require AI to work closely with other agents, whose goals and strategies might not be known beforehand. However, existing approaches for training collaborative agents often require defined and known reward signals and cannot address the problem of teaming with unknown agents that often have latent objectives/rewards. In response to this challenge, we propose teaming with unknown agents framework, which leverages kernel density Bayesian inverse learning method for active goal deduction and utilizes pre-trained, goal-conditioned policies to enable zero-shot policy adaptation. We prove that unbiased reward estimates in our framework are sufficient for optimal teaming with unknown agents. We further evaluate the framework of redesigned multi-agent particle and StarCraft II micromanagement environments with diverse unknown agents of different behaviors/rewards. Empirical results demonstrate that our framework significantly advances the teaming performance of AI and unknown agents in a wide range of collaborative scenarios.

In this study, we propose a methodology for the Emotional Mimicry Intensity (EMI) Estimation task within the context of the 6th Workshop and Competition on Affective Behavior Analysis in-the-wild. Our approach leverages the Wav2Vec 2.0 framework, pre-trained on a comprehensive podcast dataset, to extract a broad range of audio features encompassing both linguistic and paralinguistic elements. We enhance feature representation through a fusion technique that integrates individual features with a global mean vector, introducing global contextual insights into our analysis. Additionally, we incorporate a pre-trained valence-arousal-dominance (VAD) module from the Wav2Vec 2.0 model. Our fusion employs a Long Short-Term Memory (LSTM) architecture for efficient temporal analysis of audio data. Utilizing only the provided audio data, our approach demonstrates significant improvements over the established baseline.

In this study, we propose a methodology for the Emotional Mimicry Intensity (EMI) Estimation task within the context of the 6th Workshop and Competition on Affective Behavior Analysis in-the-wild. Our approach leverages the Wav2Vec 2.0 framework, pre-trained on a comprehensive podcast dataset, to extract a broad range of audio features encompassing both linguistic and paralinguistic elements. We enhance feature representation through a fusion technique that integrates individual features with a global mean vector, introducing global contextual insights into our analysis. Additionally, we incorporate a pre-trained valence-arousal-dominance (VAD) module from the Wav2Vec 2.0 model. Our fusion employs a Long Short-Term Memory (LSTM) architecture for efficient temporal analysis of audio data. Utilizing only the provided audio data, our approach demonstrates significant improvements over the established baseline.

Tools for fighting cyber-criminal activities using new technologies are promoted and deployed every day. However, too often, they are unnecessarily complex and hard to use, requiring deep domain and technical knowledge. These characteristics often limit the engagement of law enforcement and end-users in these technologies that, despite their potential, remain misunderstood. For this reason, in this study, we describe our experience in combining learning and training methods and the potential benefits of gamification to enhance technology transfer and increase adult learning. In fact, in this case, participants are experienced practitioners in professions/industries that are exposed to terrorism financing (such as Law Enforcement Officers, Financial Investigation Officers, private investigators, etc.) We define training activities on different levels for increasing the exchange of information about new trends and criminal modus operandi among and within law enforcement agencies, intensifying cross-border cooperation and supporting efforts to combat and prevent terrorism funding activities. On the other hand, a game (hackathon) is designed to address realistic challenges related to the dark net, crypto assets, new payment systems and dark web marketplaces that could be used for terrorist activities. The entire methodology was evaluated using quizzes, contest results, and engagement metrics. In particular, training events show about 60% of participants complete the 11-week training course, while the Hackathon results, gathered in two pilot studies (Madrid and The Hague), show increasing expertise among the participants (progression in the achieved points on average). At the same time, more than 70% of participants positively evaluate the use of the gamification approach, and more than 85% of them consider the implemented Use Cases suitable for their investigations.

Graph Neural Networks (GNNs) have shown promising performance in various graph learning tasks, but at the cost of resource-intensive computations. The primary overhead of GNN update stems from graph propagation and weight transformation, both involving operations on graph-scale matrices. Previous studies attempt to reduce the computational budget by leveraging graph-level or network-level sparsification techniques, resulting in downsized graph or weights. In this work, we propose Unifews, which unifies the two operations in an entry-wise manner considering individual matrix elements, and conducts joint edge-weight sparsification to enhance learning efficiency. The entry-wise design of Unifews enables adaptive compression across GNN layers with progressively increased sparsity, and is applicable to a variety of architectural designs with on-the-fly operation simplification. Theoretically, we establish a novel framework to characterize sparsified GNN learning in view of a graph optimization process, and prove that Unifews effectively approximates the learning objective with bounded error and reduced computational load. We conduct extensive experiments to evaluate the performance of our method in diverse settings. Unifews is advantageous in jointly removing more than 90% of edges and weight entries with comparable or better accuracy than baseline models. The sparsification offers remarkable efficiency improvements including 10-20x matrix operation reduction and up to 100x acceleration in graph propagation time for the largest graph at the billion-edge scale.

In this paper, we present the solution to the Emotional Mimicry Intensity (EMI) Estimation challenge, which is part of 6th Affective Behavior Analysis in-the-wild (ABAW) Competition.The EMI Estimation challenge task aims to evaluate the emotional intensity of seed videos by assessing them from a set of predefined emotion categories (i.e., "Admiration", "Amusement", "Determination", "Empathic Pain", "Excitement" and "Joy"). To tackle this challenge, we extracted rich dual-channel visual features based on ResNet18 and AUs for the video modality and effective single-channel features based on Wav2Vec2.0 for the audio modality. This allowed us to obtain comprehensive emotional features for the audiovisual modality. Additionally, leveraging a late fusion strategy, we averaged the predictions of the visual and acoustic models, resulting in a more accurate estimation of audiovisual emotional mimicry intensity. Experimental results validate the effectiveness of our approach, with the average Pearson's correlation Coefficient($\rho$) across the 6 emotion dimensionson the validation set achieving 0.3288.

Connecting text and visual modalities plays an essential role in generative intelligence. For this reason, inspired by the success of large language models, significant research efforts are being devoted to the development of Multimodal Large Language Models (MLLMs). These models can seamlessly integrate visual and textual modalities, both as input and output, while providing a dialogue-based interface and instruction-following capabilities. In this paper, we provide a comprehensive review of recent visual-based MLLMs, analyzing their architectural choices, multimodal alignment strategies, and training techniques. We also conduct a detailed analysis of these models across a wide range of tasks, including visual grounding, image generation and editing, visual understanding, and domain-specific applications. Additionally, we compile and describe training datasets and evaluation benchmarks, conducting comparisons among existing models in terms of performance and computational requirements. Overall, this survey offers a comprehensive overview of the current state of the art, laying the groundwork for future MLLMs.

Autonomous driving is regarded as one of the most promising remedies to shield human beings from severe crashes. To this end, 3D object detection serves as the core basis of such perception system especially for the sake of path planning, motion prediction, collision avoidance, etc. Generally, stereo or monocular images with corresponding 3D point clouds are already standard layout for 3D object detection, out of which point clouds are increasingly prevalent with accurate depth information being provided. Despite existing efforts, 3D object detection on point clouds is still in its infancy due to high sparseness and irregularity of point clouds by nature, misalignment view between camera view and LiDAR bird's eye of view for modality synergies, occlusions and scale variations at long distances, etc. Recently, profound progress has been made in 3D object detection, with a large body of literature being investigated to address this vision task. As such, we present a comprehensive review of the latest progress in this field covering all the main topics including sensors, fundamentals, and the recent state-of-the-art detection methods with their pros and cons. Furthermore, we introduce metrics and provide quantitative comparisons on popular public datasets. The avenues for future work are going to be judiciously identified after an in-deep analysis of the surveyed works. Finally, we conclude this paper.

Machine learning plays a role in many deployed decision systems, often in ways that are difficult or impossible to understand by human stakeholders. Explaining, in a human-understandable way, the relationship between the input and output of machine learning models is essential to the development of trustworthy machine-learning-based systems. A burgeoning body of research seeks to define the goals and methods of explainability in machine learning. In this paper, we seek to review and categorize research on counterfactual explanations, a specific class of explanation that provides a link between what could have happened had input to a model been changed in a particular way. Modern approaches to counterfactual explainability in machine learning draw connections to the established legal doctrine in many countries, making them appealing to fielded systems in high-impact areas such as finance and healthcare. Thus, we design a rubric with desirable properties of counterfactual explanation algorithms and comprehensively evaluate all currently-proposed algorithms against that rubric. Our rubric provides easy comparison and comprehension of the advantages and disadvantages of different approaches and serves as an introduction to major research themes in this field. We also identify gaps and discuss promising research directions in the space of counterfactual explainability.

Over the past few years, we have seen fundamental breakthroughs in core problems in machine learning, largely driven by advances in deep neural networks. At the same time, the amount of data collected in a wide array of scientific domains is dramatically increasing in both size and complexity. Taken together, this suggests many exciting opportunities for deep learning applications in scientific settings. But a significant challenge to this is simply knowing where to start. The sheer breadth and diversity of different deep learning techniques makes it difficult to determine what scientific problems might be most amenable to these methods, or which specific combination of methods might offer the most promising first approach. In this survey, we focus on addressing this central issue, providing an overview of many widely used deep learning models, spanning visual, sequential and graph structured data, associated tasks and different training methods, along with techniques to use deep learning with less data and better interpret these complex models --- two central considerations for many scientific use cases. We also include overviews of the full design process, implementation tips, and links to a plethora of tutorials, research summaries and open-sourced deep learning pipelines and pretrained models, developed by the community. We hope that this survey will help accelerate the use of deep learning across different scientific domains.

北京阿比特科技有限公司