In this paper we introduce a proposal to provide students in labs with an alternative to the traditional visible range spectrophotometers, whose acquisition and maintenance entails high costs, based on smartphones. Our solution faced two aspects. On the one hand, the software for the smartphone, able to perform the typical functionalities of the traditional spectrophotometers. On the other hand, the portable peripheral support needed to capture the images to be analyzed in the smartphone. The promising results allow this solution to be applied in Bring Your Own Devices (BYOD) contexts.
In this paper, we introduce a kNN-based regression method that synergizes the scalability and adaptability of traditional non-parametric kNN models with a novel variable selection technique. This method focuses on accurately estimating the conditional mean and variance of random response variables, thereby effectively characterizing conditional distributions across diverse scenarios.Our approach incorporates a robust uncertainty quantification mechanism, leveraging our prior estimation work on conditional mean and variance. The employment of kNN ensures scalable computational efficiency in predicting intervals and statistical accuracy in line with optimal non-parametric rates. Additionally, we introduce a new kNN semi-parametric algorithm for estimating ROC curves, accounting for covariates. For selecting the smoothing parameter k, we propose an algorithm with theoretical guarantees.Incorporation of variable selection enhances the performance of the method significantly over conventional kNN techniques in various modeling tasks. We validate the approach through simulations in low, moderate, and high-dimensional covariate spaces. The algorithm's effectiveness is particularly notable in biomedical applications as demonstrated in two case studies. Concluding with a theoretical analysis, we highlight the consistency and convergence rate of our method over traditional kNN models, particularly when the underlying regression model takes values in a low-dimensional space.
In this study, we explore a robust testing procedure for the high-dimensional location parameters testing problem. Initially, we introduce a spatial-sign based max-type test statistic, which exhibits excellent performance for sparse alternatives. Subsequently, we demonstrate the asymptotic independence between this max-type test statistic and the spatial-sign based sum-type test statistic (Feng and Sun, 2016). Building on this, we propose a spatial-sign based max-sum type testing procedure, which shows remarkable performance under varying signal sparsity. Our simulation studies underscore the superior performance of the procedures we propose.
In this paper, we tackle a persistent numerical instability within the total Lagrangian smoothed particle hydrodynamics (TLSPH) solid dynamics. Specifically, we address the hourglass modes that may grow and eventually deteriorate the reliability of simulation, particularly in the scenarios characterized by large deformations. We propose a generalized essentially non-hourglass formulation based on volumetric-deviatoric stress decomposition, offering a general solution for elasticity, plasticity, anisotropy, and other material models. Comparing the standard SPH formulation with the original non-nested Laplacian operator applied in our previous work \cite{wu2023essentially} to handle the hourglass issues in standard elasticity, we introduce a correction for the discretization of shear stress that relies on the discrepancy produced by a tracing-back prediction of the initial inter-particle direction from the current deformation gradient. The present formulation, when applied to standard elastic materials, is able to recover the original Laplacian operator. Due to the dimensionless nature of the correction, this formulation handles complex material models in a very straightforward way. Furthermore, a magnitude limiter is introduced to minimize the correction in domains where the discrepancy is less pronounced. The present formulation is validated, with a single set of modeling parameters, through a series of benchmark cases, confirming good stability and accuracy across elastic, plastic, and anisotropic materials. To showcase its potential, the formulation is employed to simulate a complex problem involving viscous plastic Oobleck material, contacts, and very large deformation.
Recent advancements in deep reinforcement learning (DRL) techniques have sparked its multifaceted applications in the automation sector. Managing complex decision-making problems with DRL encourages its use in the nuclear industry for tasks such as optimizing radiation exposure to the personnel during normal operating conditions and potential accidental scenarios. However, the lack of efficient reward function and effective exploration strategy thwarted its implementation in the development of radiation-aware autonomous unmanned aerial vehicle (UAV) for achieving maximum radiation protection. Here, in this article, we address these intriguing issues and introduce a deep Q-learning based architecture (RadDQN) that operates on a radiation-aware reward function to provide time-efficient minimum radiation-exposure pathway in a radiation zone. We propose a set of unique exploration strategies that fine-tune the extent of exploration and exploitation based on the state-wise variation in radiation exposure during training. Further, we benchmark the predicted path with grid-based deterministic method. We demonstrate that the formulated reward function in conjugation with adequate exploration strategy is effective in handling several scenarios with drastically different radiation field distributions. When compared to vanilla DQN, our model achieves a superior convergence rate and higher training stability.
State estimation for legged robots is challenging due to their highly dynamic motion and limitations imposed by sensor accuracy. By integrating Kalman filtering, optimization, and learning-based modalities, we propose a hybrid solution that combines proprioception and exteroceptive information for estimating the state of the robot's trunk. Leveraging joint encoder and IMU measurements, our Kalman filter is enhanced through a single-rigid body model that incorporates ground reaction force control outputs from convex Model Predictive Control optimization. The estimation is further refined through Gated Recurrent Units, which also considers semantic insights and robot height from a Vision Transformer autoencoder applied on depth images. This framework not only furnishes accurate robot state estimates, including uncertainty evaluations, but can minimize the nonlinear errors that arise from sensor measurements and model simplifications through learning. The proposed methodology is evaluated in hardware using a quadruped robot on various terrains, yielding a 65% improvement on the Root Mean Squared Error compared to our VIO SLAM baseline. Code example: //github.com/AlexS28/OptiState
In this work, we present a novel actuation strategy for a suspended aerial platform. By utilizing an underactuation approach, we demonstrate the successful oscillation damping of the proposed platform, modeled as a spherical double pendulum. A state estimator is designed in order to obtain the deflection angles of the platform, which uses only onboard IMU measurements. The state estimator is an extended Kalman filter (EKF) with intermittent measurements obtained at different frequencies. An optimal state feedback controller and a PD+ controller are designed in order to dampen the oscillations of the platform in the joint space and task space respectively. The proposed underactuated platform is found to be more energy-efficient than an omnidirectional platform and requires fewer actuators. The effectiveness of our proposed system is validated using both simulations and experimental studies.
In this paper, we propose an advancement to Tarskian model-theoretic semantics, leading to a unified quantitative theory of semantic information and communication. We start with description of inductive logic and probabilities, which serve as notable tools in development of the proposed theory. Then, we identify two disparate kinds of uncertainty in semantic communication, that of physical and content, present refined interpretations of semantic information measures, and conclude with proposing a new measure for semantic content-information and entropy. Our proposition standardizes semantic information across different universes and systems, hence bringing measurability and comparability into semantic communication. We then proceed with introducing conditional and mutual semantic cont-information measures and point out to their utility in formulating practical and optimizable lossless and lossy semantic compression objectives. Finally, we experimentally demonstrate the value of our theoretical propositions.
In this paper, we proposed to apply meta learning approach for low-resource automatic speech recognition (ASR). We formulated ASR for different languages as different tasks, and meta-learned the initialization parameters from many pretraining languages to achieve fast adaptation on unseen target language, via recently proposed model-agnostic meta learning algorithm (MAML). We evaluated the proposed approach using six languages as pretraining tasks and four languages as target tasks. Preliminary results showed that the proposed method, MetaASR, significantly outperforms the state-of-the-art multitask pretraining approach on all target languages with different combinations of pretraining languages. In addition, since MAML's model-agnostic property, this paper also opens new research direction of applying meta learning to more speech-related applications.
The recent proliferation of knowledge graphs (KGs) coupled with incomplete or partial information, in the form of missing relations (links) between entities, has fueled a lot of research on knowledge base completion (also known as relation prediction). Several recent works suggest that convolutional neural network (CNN) based models generate richer and more expressive feature embeddings and hence also perform well on relation prediction. However, we observe that these KG embeddings treat triples independently and thus fail to cover the complex and hidden information that is inherently implicit in the local neighborhood surrounding a triple. To this effect, our paper proposes a novel attention based feature embedding that captures both entity and relation features in any given entity's neighborhood. Additionally, we also encapsulate relation clusters and multihop relations in our model. Our empirical study offers insights into the efficacy of our attention based model and we show marked performance gains in comparison to state of the art methods on all datasets.
In this paper, we propose the joint learning attention and recurrent neural network (RNN) models for multi-label classification. While approaches based on the use of either model exist (e.g., for the task of image captioning), training such existing network architectures typically require pre-defined label sequences. For multi-label classification, it would be desirable to have a robust inference process, so that the prediction error would not propagate and thus affect the performance. Our proposed model uniquely integrates attention and Long Short Term Memory (LSTM) models, which not only addresses the above problem but also allows one to identify visual objects of interests with varying sizes without the prior knowledge of particular label ordering. More importantly, label co-occurrence information can be jointly exploited by our LSTM model. Finally, by advancing the technique of beam search, prediction of multiple labels can be efficiently achieved by our proposed network model.