In this paper, we propose an advancement to Tarskian model-theoretic semantics, leading to a unified quantitative theory of semantic information and communication. We start with description of inductive logic and probabilities, which serve as notable tools in development of the proposed theory. Then, we identify two disparate kinds of uncertainty in semantic communication, that of physical and content, present refined interpretations of semantic information measures, and conclude with proposing a new measure for semantic content-information and entropy. Our proposition standardizes semantic information across different universes and systems, hence bringing measurability and comparability into semantic communication. We then proceed with introducing conditional and mutual semantic cont-information measures and point out to their utility in formulating practical and optimizable lossless and lossy semantic compression objectives. Finally, we experimentally demonstrate the value of our theoretical propositions.
The objective of this paper is to provide an introduction to the principles of Bayesian joint modeling of longitudinal measurements and time-to-event outcomes, as well as model implementation using the BUGS language syntax. This syntax can be executed directly using OpenBUGS or by utilizing convenient functions to invoke OpenBUGS and JAGS from R software. In this paper, all details of joint models are provided, ranging from simple to more advanced models. The presentation started with the joint modeling of a Gaussian longitudinal marker and time-to-event outcome. The implementation of the Bayesian paradigm of the model is reviewed. The strategies for simulating data from the JM are also discussed. A proportional hazard model with various forms of baseline hazards, along with the discussion of all possible association structures between the two sub-models are taken into consideration. The paper covers joint models with multivariate longitudinal measurements, zero-inflated longitudinal measurements, competing risks, and time-to-event with cure fraction. The models are illustrated by the analyses of several real data sets. All simulated and real data and code are available at \url{//github.com/tbaghfalaki/JM-with-BUGS-and-JAGS}.
Kernel techniques are among the most influential approaches in data science and statistics. Under mild conditions, the reproducing kernel Hilbert space associated to a kernel is capable of encoding the independence of $M\ge 2$ random variables. Probably the most widespread independence measure relying on kernels is the so-called Hilbert-Schmidt independence criterion (HSIC; also referred to as distance covariance in the statistics literature). Despite various existing HSIC estimators designed since its introduction close to two decades ago, the fundamental question of the rate at which HSIC can be estimated is still open. In this work, we prove that the minimax optimal rate of HSIC estimation on $\mathbb R^d$ for Borel measures containing the Gaussians with continuous bounded translation-invariant characteristic kernels is $\mathcal O\!\left(n^{-1/2}\right)$. Specifically, our result implies the optimality in the minimax sense of many of the most-frequently used estimators (including the U-statistic, the V-statistic, and the Nystr\"om-based one) on $\mathbb R^d$.
In this study, we address the challenge of constructing continuous three-dimensional (3D) models that accurately represent uncertain surfaces, derived from noisy and incomplete LiDAR scanning data. Building upon our prior work, which utilized the Gaussian Process (GP) and Gaussian Mixture Model (GMM) for structured building models, we introduce a more generalized approach tailored for complex surfaces in urban scenes, where four-dimensional (4D) GMM Regression and GP with derivative observations are applied. A Hierarchical GMM (HGMM) is employed to optimize the number of GMM components and speed up the GMM training. With the prior map obtained from HGMM, GP inference is followed for the refinement of the final map. Our approach models the implicit surface of the geo-object and enables the inference of the regions that are not completely covered by measurements. The integration of GMM and GP yields well-calibrated uncertainty estimates alongside the surface model, enhancing both accuracy and reliability. The proposed method is evaluated on the real data collected by a mobile mapping system. Compared to the performance in mapping accuracy and uncertainty quantification of other methods such as Gaussian Process Implicit Surface map (GPIS) and log-Gaussian Process Implicit Surface map (Log-GPIS), the proposed method achieves lower RMSEs, higher log-likelihood values and fewer computational costs for the evaluated datasets.
In this work, we study the classical problem of verifying programs with respect to formal specifications given in the linear temporal logic (LTL). LTL is a rich and expressive logic that can specify important properties of programs. This includes, but is not limited to, termination, safety, liveness, progress, recurrence and reach-avoid properties. We first present novel sound and complete witnesses for LTL verification over imperative programs. Our witnesses are applicable to both universal (all runs) and existential (some run) settings. We then consider polynomial arithmetic programs, i.e. programs in which every assignment and guard consists only of polynomial expressions, with specifications as LTL formulas in which atomic propositions are polynomial constraints. For this setting, we provide an efficient algorithm to automatically synthesize such LTL witnesses. Our synthesis procedure is both sound and semi-complete, i.e. complete for any fixed polynomial degree in the templates. In other words, we provide the first template-based approach for polynomial programs that can handle any LTL formula as its specification. Our approach has termination guarantees with sub-exponential time complexity and generalizes and unifies previous methods for termination, safety and reachability, since they are expressible in LTL. Finally, we present experimental results demonstrating the effectiveness of our approach and that it can handle programs which were beyond the reach of previous state-of-the-art tools.
In this study, we introduce a method based on Separable Physics-Informed Neural Networks (SPINNs) for effectively solving the BGK model of the Boltzmann equation. While the mesh-free nature of PINNs offers significant advantages in handling high-dimensional partial differential equations (PDEs), challenges arise when applying quadrature rules for accurate integral evaluation in the BGK operator, which can compromise the mesh-free benefit and increase computational costs. To address this, we leverage the canonical polyadic decomposition structure of SPINNs and the linear nature of moment calculation, achieving a substantial reduction in computational expense for quadrature rule application. The multi-scale nature of the particle density function poses difficulties in precisely approximating macroscopic moments using neural networks. To improve SPINN training, we introduce the integration of Gaussian functions into SPINNs, coupled with a relative loss approach. This modification enables SPINNs to decay as rapidly as Maxwellian distributions, thereby enhancing the accuracy of macroscopic moment approximations. The relative loss design further ensures that both large and small-scale features are effectively captured by the SPINNs. The efficacy of our approach is demonstrated through a series of five numerical experiments, including the solution to a challenging 3D Riemann problem. These results highlight the potential of our novel method in efficiently and accurately addressing complex challenges in computational physics.
In this paper, we provide a systematic approach for assessing and comparing the computational complexity of neural network layers in digital signal processing. We provide and link four software-to-hardware complexity measures, defining how the different complexity metrics relate to the layers' hyper-parameters. This paper explains how to compute these four metrics for feed-forward and recurrent layers, and defines in which case we ought to use a particular metric depending on whether we characterize a more soft- or hardware-oriented application. One of the four metrics, called `the number of additions and bit shifts (NABS)', is newly introduced for heterogeneous quantization. NABS characterizes the impact of not only the bitwidth used in the operation but also the type of quantization used in the arithmetical operations. We intend this work to serve as a baseline for the different levels (purposes) of complexity estimation related to the neural networks' application in real-time digital signal processing, aiming at unifying the computational complexity estimation.
In this paper we validate, including experimentally, the effectiveness of a recent theoretical developments made by our group on control-affine Extremum Seeking Control (ESC) systems. In particular, our validation is concerned with the problem of source seeking by a mobile robot to the unknown source of a scalar signal (e.g., light). Our recent theoretical results made it possible to estimate the gradient of the unknown objective function (i.e., the scalar signal) incorporated in the ESC and use such information to apply an adaptation law which attenuates the oscillations of the ESC system while converging to the extremum (i.e., source). Based on our previous results, we propose here an amended design of the simple single-integrator control-affine structure known in ESC literature and show that it can functions effectively to achieve a model-free, real-time source seeking of light with attenuated oscillations using only local measurements of the light intensity. Results imply that the proposed design has significant potential as it also demonstrated much better convergence rate. We hope this paper encourages expansion of the proposed design in other fields, problems and experiments.
In this paper, we investigate the conditions under which link analysis algorithms prevent minority groups from reaching high ranking slots. We find that the most common link-based algorithms using centrality metrics, such as PageRank and HITS, can reproduce and even amplify bias against minority groups in networks. Yet, their behavior differs: one one hand, we empirically show that PageRank mirrors the degree distribution for most of the ranking positions and it can equalize representation of minorities among the top ranked nodes; on the other hand, we find that HITS amplifies pre-existing bias in homophilic networks through a novel theoretical analysis, supported by empirical results. We find the root cause of bias amplification in HITS to be the level of homophily present in the network, modeled through an evolving network model with two communities. We illustrate our theoretical analysis on both synthetic and real datasets and we present directions for future work.
In this paper, we study the cooperative Multi-Agent Reinforcement Learning (MARL) problems using Reward Machines (RMs) to specify the reward functions such that the prior knowledge of high-level events in a task can be leveraged to facilitate the learning efficiency. Unlike the existing work that RMs have been incorporated into MARL for task decomposition and policy learning in relatively simple domains or with an assumption of independencies among the agents, we present Multi-Agent Reinforcement Learning with a Hierarchy of RMs (MAHRM) that is capable of dealing with more complex scenarios when the events among agents can occur concurrently and the agents are highly interdependent. MAHRM exploits the relationship of high-level events to decompose a task into a hierarchy of simpler subtasks that are assigned to a small group of agents, so as to reduce the overall computational complexity. Experimental results in three cooperative MARL domains show that MAHRM outperforms other MARL methods using the same prior knowledge of high-level events.
In this work, we introduce DeepIPC, a novel end-to-end model tailored for autonomous driving, which seamlessly integrates perception and control tasks. Unlike traditional models that handle these tasks separately, DeepIPC innovatively combines a perception module, which processes RGBD images for semantic segmentation and generates bird's eye view (BEV) mappings, with a controller module that utilizes these insights along with GNSS and angular speed measurements to accurately predict navigational waypoints. This integration allows DeepIPC to efficiently translate complex environmental data into actionable driving commands. Our comprehensive evaluation demonstrates DeepIPC's superior performance in terms of drivability and multi-task efficiency across diverse real-world scenarios, setting a new benchmark for end-to-end autonomous driving systems with a leaner model architecture. The experimental results underscore DeepIPC's potential to significantly enhance autonomous vehicular navigation, promising a step forward in the development of autonomous driving technologies. For further insights and replication, we will make our code and datasets available at //github.com/oskarnatan/DeepIPC.