In this paper we validate, including experimentally, the effectiveness of a recent theoretical developments made by our group on control-affine Extremum Seeking Control (ESC) systems. In particular, our validation is concerned with the problem of source seeking by a mobile robot to the unknown source of a scalar signal (e.g., light). Our recent theoretical results made it possible to estimate the gradient of the unknown objective function (i.e., the scalar signal) incorporated in the ESC and use such information to apply an adaptation law which attenuates the oscillations of the ESC system while converging to the extremum (i.e., source). Based on our previous results, we propose here an amended design of the simple single-integrator control-affine structure known in ESC literature and show that it can functions effectively to achieve a model-free, real-time source seeking of light with attenuated oscillations using only local measurements of the light intensity. Results imply that the proposed design has significant potential as it also demonstrated much better convergence rate. We hope this paper encourages expansion of the proposed design in other fields, problems and experiments.
To address the challenge of choice congestion in matching markets, in this work, we introduce a two-sided assortment optimization framework under general choice preferences. The goal in this problem is to maximize the expected number of matches by deciding which assortments are displayed to the agents and the order in which they are shown. In this context, we identify several classes of policies that platforms can use in their design. Our goals are: (1) to measure the value that one class of policies has over another one, and (2) to approximately solve the optimization problem itself for a given class. For (1), we define the adaptivity gap as the worst-case ratio between the optimal values of two different policy classes. First, we show that the gap between the class of policies that statically show assortments to one-side first and the class of policies that adaptively show assortments to one-side first is exactly $1-1/e$. Second, we show that the gap between the latter class of policies and the fully adaptive class of policies that show assortments to agents one by one is exactly $1/2$. We also note that the worst policies are those who simultaneously show assortments to all the agents, in fact, we show that their adaptivity gap even with respect to one-sided static policies can be arbitrarily small. For (2), we first show that there exists a polynomial time policy that achieves a $1/4$ approximation factor within the class of policies that adaptively show assortments to agents one by one. Finally, when agents' preferences are governed by multinomial-logit models, we show that a 0.082 approximation factor can be obtained within the class of policies that show assortments to all agents at once.
In this paper, we introduce a novel communication-assisted sensing (CAS) framework that explores the potential coordination gains offered by the integrated sensing and communication technique. The CAS system endows users with beyond-line-of-the-sight sensing capabilities, supported by a dual-functional base station that enables simultaneous sensing and communication. To delve into the system's fundamental limits, we characterize the information-theoretic framework of the CAS system in terms of rate-distortion theory. We reveal the achievable overall distortion between the target's state and the reconstructions at the end-user, referred to as the sensing quality of service, within a special case where the distortion metric is separable for sensing and communication processes. As a case study, we employ a typical application to demonstrate distortion minimization under the ISAC signaling strategy, showcasing the potential of CAS in enhancing sensing capabilities.
In this paper, we introduce "Marking", a novel grading task that enhances automated grading systems by performing an in-depth analysis of student responses and providing students with visual highlights. Unlike traditional systems that provide binary scores, "marking" identifies and categorizes segments of the student response as correct, incorrect, or irrelevant and detects omissions from gold answers. We introduce a new dataset meticulously curated by Subject Matter Experts specifically for this task. We frame "Marking" as an extension of the Natural Language Inference (NLI) task, which is extensively explored in the field of Natural Language Processing. The gold answer and the student response play the roles of premise and hypothesis in NLI, respectively. We subsequently train language models to identify entailment, contradiction, and neutrality from student response, akin to NLI, and with the added dimension of identifying omissions from gold answers. Our experimental setup involves the use of transformer models, specifically BERT and RoBERTa, and an intelligent training step using the e-SNLI dataset. We present extensive baseline results highlighting the complexity of the "Marking" task, which sets a clear trajectory for the upcoming study. Our work not only opens up new avenues for research in AI-powered educational assessment tools, but also provides a valuable benchmark for the AI in education community to engage with and improve upon in the future. The code and dataset can be found at //github.com/luffycodes/marking.
In this paper, we characterize the fundamental limits of a communication system with three users (i.e., three transmitters) and a single receiver where communication from two covert users must remain undetectable to an external warden. Our results show a tradeoff between the highest rates that are simultaneously achievable for the three users. They further show that the presence of a non-covert user in the system can enhance the capacities of the covert users under stringent secret-key constraints. To derive our fundamental limits, we provide an information-theoretic converse proof and present a coding scheme that achieves the performance of our converse result. Our coding scheme is based on multiplexing different code phases, which seems to be essential to exhaust the entire tradeoff region between the rates at the covert and the two non-covert users. This property is reminiscent of the setup with multiple non-covert users, where multiplexing is also required to exhaust the entire rate-region.
In this paper we consider the simulation-based Bayesian analysis of stochastic volatility in mean (SVM) models. Extending the highly efficient Markov chain Monte Carlo mixture sampler for the SV model proposed in Kim et al. (1998) and Omori et al. (2007), we develop an accurate approximation of the non-central chi-squared distribution as a mixture of thirty normal distributions. Under this mixture representation, we sample the parameters and latent volatilities in one block. We also detail a correction of the small approximation error by using additional Metropolis-Hastings steps. The proposed method is extended to the SVM model with leverage. The methodology and models are applied to excess holding yields in empirical studies, and the SVM model with leverage is shown to outperform competing volatility models based on marginal likelihoods.
In this article, we propose an accuracy-assuring technique for finding a solution for unsymmetric linear systems. Such problems are related to different areas such as image processing, computer vision, and computational fluid dynamics. Parallel implementation of Krylov subspace methods speeds up finding approximate solutions for linear systems. In this context, the refined approach in pipelined BiCGStab enhances scalability on distributed memory machines, yielding to substantial speed improvements compared to the standard BiCGStab method. However, it's worth noting that the pipelined BiCGStab algorithm sacrifices some accuracy, which is stabilized with the residual replacement technique. This paper aims to address this issue by employing the ExBLAS-based reproducible approach. We validate the idea on a set of matrices from the SuiteSparse Matrix Collection.
In this paper, we investigate the retrieval-augmented generation (RAG) based on Knowledge Graphs (KGs) to improve the accuracy and reliability of Large Language Models (LLMs). Recent approaches suffer from insufficient and repetitive knowledge retrieval, tedious and time-consuming query parsing, and monotonous knowledge utilization. To this end, we develop a Hypothesis Knowledge Graph Enhanced (HyKGE) framework, which leverages LLMs' powerful reasoning capacity to compensate for the incompleteness of user queries, optimizes the interaction process with LLMs, and provides diverse retrieved knowledge. Specifically, HyKGE explores the zero-shot capability and the rich knowledge of LLMs with Hypothesis Outputs to extend feasible exploration directions in the KGs, as well as the carefully curated prompt to enhance the density and efficiency of LLMs' responses. Furthermore, we introduce the HO Fragment Granularity-aware Rerank Module to filter out noise while ensuring the balance between diversity and relevance in retrieved knowledge. Experiments on two Chinese medical multiple-choice question datasets and one Chinese open-domain medical Q&A dataset with two LLM turbos demonstrate the superiority of HyKGE in terms of accuracy and explainability.
This paper performs the crucial work of establishing a baseline for gaze-driven authentication performance to begin answering fundamental research questions using a very large dataset of gaze recordings from 9202 people with a level of eye tracking (ET) signal quality equivalent to modern consumer-facing virtual reality (VR) platforms. The size of the employed dataset is at least an order-of-magnitude larger than any other dataset from previous related work. Binocular estimates of the optical and visual axes of the eyes and a minimum duration for enrollment and verification are required for our model to achieve a false rejection rate (FRR) of below 3% at a false acceptance rate (FAR) of 1 in 50,000. In terms of identification accuracy which decreases with gallery size, we estimate that our model would fall below chance-level accuracy for gallery sizes of 148,000 or more. Our major findings indicate that gaze authentication can be as accurate as required by the FIDO standard when driven by a state-of-the-art machine learning architecture and a sufficiently large training dataset.
In the post-deep learning era, the Transformer architecture has demonstrated its powerful performance across pre-trained big models and various downstream tasks. However, the enormous computational demands of this architecture have deterred many researchers. To further reduce the complexity of attention models, numerous efforts have been made to design more efficient methods. Among them, the State Space Model (SSM), as a possible replacement for the self-attention based Transformer model, has drawn more and more attention in recent years. In this paper, we give the first comprehensive review of these works and also provide experimental comparisons and analysis to better demonstrate the features and advantages of SSM. Specifically, we first give a detailed description of principles to help the readers quickly capture the key ideas of SSM. After that, we dive into the reviews of existing SSMs and their various applications, including natural language processing, computer vision, graph, multi-modal and multi-media, point cloud/event stream, time series data, and other domains. In addition, we give statistical comparisons and analysis of these models and hope it helps the readers to understand the effectiveness of different structures on various tasks. Then, we propose possible research points in this direction to better promote the development of the theoretical model and application of SSM. More related works will be continuously updated on the following GitHub: //github.com/Event-AHU/Mamba_State_Space_Model_Paper_List.
This article presents the affordances that Generative Artificial Intelligence can have in disinformation context, one of the major threats to our digitalized society. We present a research framework to generate customized agent-based social networks for disinformation simulations that would enable understanding and evaluation of the phenomena whilst discussing open challenges.