亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We prove that functions over the reals computable in polynomial time can be characterised using discrete ordinary differential equations (ODE), also known as finite differences. We also provide a characterisation of functions computable in polynomial space over the reals. In particular, this covers space complexity, while existing characterisations were only able to cover time complexity, and were restricted to functions over the integers. We prove furthermore that no artificial sign or test function is needed even for time complexity. At a technical level, this is obtained by proving that Turing machines can be simulated with analytic discrete ordinary differential equations. We believe this result opens the way to many applications, as it opens the possibility of programming with ODEs, with an underlying well-understood time and space complexity.

相關內容

We are interested in numerical algorithms for computing the electrical field generated by a charge distribution localized on scale $l$ in an infinite heterogeneous correlated random medium, in a situation where the medium is only known in a box of diameter $L\gg l$ around the support of the charge. We show that the algorithm of Lu, Otto and Wang, suggesting optimal Dirichlet boundary conditions motivated by the multipole expansion of Bella, Giunti and Otto, still performs well in correlated media. With overwhelming probability, we obtain a convergence rate in terms of $l$, $L$ and the size of the correlations for which optimality is supported with numerical simulations. These estimates are provided for ensembles which satisfy a multi-scale logarithmic Sobolev inequality, where our main tool is an extension of the semi-group estimates established by the first author. As part of our strategy, we construct sub-linear second-order correctors in this correlated setting which is of independent interest.

Identifiability of discrete statistical models with latent variables is known to be challenging to study, yet crucial to a model's interpretability and reliability. This work presents a general algebraic technique to investigate identifiability of complicated discrete models with latent and graphical components. Specifically, motivated by diagnostic tests collecting multivariate categorical data, we focus on discrete models with multiple binary latent variables. In the considered model, the latent variables can have arbitrary dependencies among themselves while the latent-to-observed measurement graph takes a "star-forest" shape. We establish necessary and sufficient graphical criteria for identifiability, and reveal an interesting and perhaps surprising phenomenon of blessing-of-dependence geometry: under the minimal conditions for generic identifiability, the parameters are identifiable if and only if the latent variables are not statistically independent. Thanks to this theory, we can perform formal hypothesis tests of identifiability in the boundary case by testing certain marginal independence of the observed variables. Our results give new understanding of statistical properties of graphical models with latent variables. They also entail useful implications for designing diagnostic tests or surveys that measure binary latent traits.

Tukey's depth (or halfspace depth) is a widely used measure of centrality for multivariate data. However, exact computation of Tukey's depth is known to be a hard problem in high dimensions. As a remedy, randomized approximations of Tukey's depth have been proposed. In this paper we explore when such randomized algorithms return a good approximation of Tukey's depth. We study the case when the data are sampled from a log-concave isotropic distribution. We prove that, if one requires that the algorithm runs in polynomial time in the dimension, the randomized algorithm correctly approximates the maximal depth $1/2$ and depths close to zero. On the other hand, for any point of intermediate depth, any good approximation requires exponential complexity.

Noise is usually regarded as adversarial to extract the effective dynamics from time series, such that the conventional data-driven approaches usually aim at learning the dynamics by mitigating the noisy effect. However, noise can have a functional role of driving transitions between stable states underlying many natural and engineered stochastic dynamics. To capture such stochastic transitions from data, we find that leveraging a machine learning model, reservoir computing as a type of recurrent neural network, can learn noise-induced transitions. We develop a concise training protocol for tuning hyperparameters, with a focus on a pivotal hyperparameter controlling the time scale of the reservoir dynamics. The trained model generates accurate statistics of transition time and the number of transitions. The approach is applicable to a wide class of systems, including a bistable system under a double-well potential, with either white noise or colored noise. It is also aware of the asymmetry of the double-well potential, the rotational dynamics caused by non-detailed balance, and transitions in multi-stable systems. For the experimental data of protein folding, it learns the transition time between folded states, providing a possibility of predicting transition statistics from a small dataset. The results demonstrate the capability of machine-learning methods in capturing noise-induced phenomena.

In general, high order splitting methods suffer from an order reduction phenomena when applied to the time integration of partial differential equations with non-periodic boundary conditions. In the last decade, there were introduced several modifications to prevent the second order Strang Splitting method from such a phenomena. In this article, inspired by these recent corrector techniques, we introduce a splitting method of order three for a class of semilinear parabolic problems that avoids order reduction in the context of non-periodic boundary conditions. We give a proof for the third order convergence of the method in a simplified linear setting and confirm the result by numerical experiments. Moreover, we show numerically that the high order convergence persists for an order four variant of a splitting method, and also for a nonlinear source term.

Achieving real-time capability is an essential prerequisite for the industrial implementation of nonlinear model predictive control (NMPC). Data-driven model reduction offers a way to obtain low-order control models from complex digital twins. In particular, data-driven approaches require little expert knowledge of the particular process and its model, and provide reduced models of a well-defined generic structure. Herein, we apply our recently proposed data-driven reduction strategy based on Koopman theory [Schulze et al. (2022), Comput. Chem. Eng.] to generate a low-order control model of an air separation unit (ASU). The reduced Koopman model combines autoencoders and linear latent dynamics and is constructed using machine learning. Further, we present an NMPC implementation that uses derivative computation tailored to the fixed block structure of reduced Koopman models. Our reduction approach with tailored NMPC implementation enables real-time NMPC of an ASU at an average CPU time decrease by 98 %.

We propose a class of nonstationary processes to characterize space- and time-varying directional associations in point-referenced data. We are motivated by spatiotemporal modeling of air pollutants in which local wind patterns are key determinants of the pollutant spread, but information regarding prevailing wind directions may be missing or unreliable. We propose to map a discrete set of wind directions to edges in a sparse directed acyclic graph (DAG), accounting for uncertainty in directional correlation patterns across a domain. The resulting Bag of DAGs processes (BAGs) lead to interpretable nonstationarity and scalability for large data due to sparsity of DAGs in the bag. We outline Bayesian hierarchical models using BAGs and illustrate inferential and performance gains of our methods compared to other state-of-the-art alternatives. We analyze fine particulate matter using high-resolution data from low-cost air quality sensors in California during the 2020 wildfire season. An R package is available on GitHub.

Linear combination is a potent data fusion method in information retrieval tasks, thanks to its ability to adjust weights for diverse scenarios. However, achieving optimal weight training has traditionally required manual relevance judgments on a large percentage of documents, a labor-intensive and expensive process. In this study, we investigate the feasibility of obtaining near-optimal weights using a mere 20\%-50\% of relevant documents. Through experiments on four TREC datasets, we find that weights trained with multiple linear regression using this reduced set closely rival those obtained with TREC's official "qrels." Our findings unlock the potential for more efficient and affordable data fusion, empowering researchers and practitioners to reap its full benefits with significantly less effort.

The (modern) arbitrary derivative (ADER) approach is a popular technique for the numerical solution of differential problems based on iteratively solving an implicit discretization of their weak formulation. In this work, focusing on an ODE context, we investigate several strategies to improve this approach. Our initial emphasis is on the order of accuracy of the method in connection with the polynomial discretization of the weak formulation. We demonstrate that precise choices lead to higher-order convergences in comparison to the existing literature. Then, we put ADER methods into a Deferred Correction (DeC) formalism. This allows to determine the optimal number of iterations, which is equal to the formal order of accuracy of the method, and to introduce efficient $p$-adaptive modifications. These are defined by matching the order of accuracy achieved and the degree of the polynomial reconstruction at each iteration. We provide analytical and numerical results, including the stability analysis of the new modified methods, the investigation of the computational efficiency, an application to adaptivity and an application to hyperbolic PDEs with a Spectral Difference (SD) space discretization.

Simulating physical problems involving multi-time scale coupling is challenging due to the need of solving these multi-time scale processes simultaneously. In response to this challenge, this paper proposed an explicit multi-time step algorithm coupled with a solid dynamic relaxation scheme. The explicit scheme simplifies the equation system in contrast to the implicit scheme, while the multi-time step algorithm allows the equations of different physical processes to be solved under different time step sizes. Furthermore, an implicit viscous damping relaxation technique is applied to significantly reduce computational iterations required to achieve equilibrium in the comparatively fast solid response process. To validate the accuracy and efficiency of the proposed algorithm, two distinct scenarios, i.e., a nonlinear hardening bar stretching and a fluid diffusion coupled with Nafion membrane flexure, are simulated. The results show good agreement with experimental data and results from other numerical methods, and the simulation time is reduced firstly by independently addressing different processes with the multi-time step algorithm and secondly decreasing solid dynamic relaxation time through the incorporation of damping techniques.

北京阿比特科技有限公司