亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The fidelity bandits problem is a variant of the $K$-armed bandit problem in which the reward of each arm is augmented by a fidelity reward that provides the player with an additional payoff depending on how 'loyal' the player has been to that arm in the past. We propose two models for fidelity. In the loyalty-points model the amount of extra reward depends on the number of times the arm has previously been played. In the subscription model the additional reward depends on the current number of consecutive draws of the arm. We consider both stochastic and adversarial problems. Since single-arm strategies are not always optimal in stochastic problems, the notion of regret in the adversarial setting needs careful adjustment. We introduce three possible notions of regret and investigate which can be bounded sublinearly. We study in detail the special cases of increasing, decreasing and coupon (where the player gets an additional reward after every $m$ plays of an arm) fidelity rewards. For the models which do not necessarily enjoy sublinear regret, we provide a worst case lower bound. For those models which exhibit sublinear regret, we provide algorithms and bound their regret.

相關內容

The standard assumption in reinforcement learning (RL) is that agents observe feedback for their actions immediately. However, in practice feedback is often observed in delay. This paper studies online learning in episodic Markov decision process (MDP) with unknown transitions, adversarially changing costs, and unrestricted delayed bandit feedback. More precisely, the feedback for the agent in episode $k$ is revealed only in the end of episode $k + d^k$, where the delay $d^k$ can be changing over episodes and chosen by an oblivious adversary. We present the first algorithms that achieve near-optimal $\sqrt{K + D}$ regret, where $K$ is the number of episodes and $D = \sum_{k=1}^K d^k$ is the total delay, significantly improving upon the best known regret bound of $(K + D)^{2/3}$.

We consider edge modification problems towards block and strictly chordal graphs, where one is given an undirected graph $G = (V,E)$ and an integer $k \in \mathbb{N}$ and seeks to edit (add or delete) at most $k$ edges from $G$ to obtain a block graph or a strictly chordal graph. The completion and deletion variants of these problems are defined similarly by only allowing edge additions for the former and only edge deletions for the latter. Block graphs are a well-studied class of graphs and admit several characterizations, e.g. they are diamond-free chordal graphs. Strictly chordal graphs, also referred to as block duplicate graphs, are a natural generalization of block graphs where one can add true twins of cut-vertices. Strictly chordal graphs are exactly dart and gem-free chordal graphs. We prove the NP-completeness for most variants of these problems and provide $O(k^2)$ vertex-kernels for Block Graph Edition and Block Graph Deletion, $O(k^3)$ vertex-kernels for Strictly Chordal Completion and Strictly Chordal Deletion and a $O(k^4)$ vertex-kernel for Strictly Chordal Edition.

In this paper, we revisit the regret minimization problem in sparse stochastic contextual linear bandits, where feature vectors may be of large dimension $d$, but where the reward function depends on a few, say $s_0\ll d$, of these features only. We present Thresholded Lasso bandit, an algorithm that (i) estimates the vector defining the reward function as well as its sparse support, i.e., significant feature elements, using the Lasso framework with thresholding, and (ii) selects an arm greedily according to this estimate projected on its support. The algorithm does not require prior knowledge of the sparsity index $s_0$ and can be parameter-free. For this simple algorithm, we establish non-asymptotic regret upper bounds scaling as $\mathcal{O}( \log d + \sqrt{T} )$ in general, and as $\mathcal{O}( \log d + \log T)$ under the so-called margin condition (a probabilistic condition on the separation of the arm rewards). The regret of previous algorithms scales as $\mathcal{O}( \log d + \sqrt{T \log (d T)})$ and $\mathcal{O}( \log T \log d)$ in the two settings, respectively. Through numerical experiments, we confirm that our algorithm outperforms existing methods.

Assuming distributions are Gaussian often facilitates computations that are otherwise intractable. We study the performance of an agent that attains a bounded information ratio with respect to a bandit environment with a Gaussian prior distribution and a Gaussian likelihood function when applied instead to a Bernoulli bandit. Relative to an information-theoretic bound on the Bayesian regret the agent would incur when interacting with the Gaussian bandit, we bound the increase in regret when the agent interacts with the Bernoulli bandit. If the Gaussian prior distribution and likelihood function are sufficiently diffuse, this increase grows at a rate which is at most linear in the square-root of the time horizon, and thus the per-timestep increase vanishes. Our results formalize the folklore that so-called Bayesian agents remain effective when instantiated with diffuse misspecified distributions.

In the past decade, deep active learning (DAL) has heavily focused upon classification problems, or problems that have some 'valid' data manifolds, such as natural languages or images. As a result, existing DAL methods are not applicable to a wide variety of important problems -- such as many scientific computing problems -- that involve regression on relatively unstructured input spaces. In this work we propose the first DAL query-synthesis approach for regression problems. We frame query synthesis as an inverse problem and use the recently-proposed neural-adjoint (NA) solver to efficiently find points in the continuous input domain that optimize the query-by-committee (QBC) criterion. Crucially, the resulting NA-QBC approach removes the one sensitive hyperparameter of the classical QBC active learning approach - the "pool size"- making NA-QBC effectively hyperparameter free. This is significant because DAL methods can be detrimental, even compared to random sampling, if the wrong hyperparameters are chosen. We evaluate Random, QBC and NA-QBC sampling strategies on four regression problems, including two contemporary scientific computing problems. We find that NA-QBC achieves better average performance than random sampling on every benchmark problem, while QBC can be detrimental if the wrong hyperparameters are chosen.

We study Martin-L\"{o}f random (ML-random) points on computable probability measures on sample and parameter spaces (Bayes models). We consider four variants of conditional random sequences with respect to the conditional distributions: two of them are defined by ML-randomness on Bayes models and the others are defined by blind tests for conditional distributions. We consider a weak criterion for conditional ML-randomness and show that only variants of ML-randomness on Bayes models satisfy the criterion. We show that these four variants of conditional randomness are identical when the conditional probability measure is computable and the posterior distribution converges weakly to almost all parameters. We compare ML-randomness on Bayes models with randomness for uniformly computable parametric models. It is known that two computable probability measures are orthogonal if and only if their ML-random sets are disjoint. We extend these results for uniformly computable parametric models. Finally, we present an algorithmic solution to a classical problem in Bayes statistics, i.e.~the posterior distributions converge weakly to almost all parameters if and only if the posterior distributions converge weakly to all ML-random parameters.

The conventional approach to data-driven inversion framework is based on Gaussian statistics that presents serious difficulties, especially in the presence of outliers in the measurements. In this work, we present maximum likelihood estimators associated with generalized Gaussian distributions in the context of R\'enyi, Tsallis and Kaniadakis statistics. In this regard, we analytically analyse the outlier-resistance of each proposal through the so-called influence function. In this way, we formulate inverse problems by constructing objective functions linked to the maximum likelihood estimators. To demonstrate the robustness of the generalized methodologies, we consider an important geophysical inverse problem with high noisy data with spikes. The results reveal that the best data inversion performance occurs when the entropic index from each generalized statistic is associated with objective functions proportional to the inverse of the error amplitude. We argue that in such a limit the three approaches are resistant to outliers and are also equivalent, which suggests a lower computational cost for the inversion process due to the reduction of numerical simulations to be performed and the fast convergence of the optimization process.

We study the problem of learning in the stochastic shortest path (SSP) setting, where an agent seeks to minimize the expected cost accumulated before reaching a goal state. We design a novel model-based algorithm EB-SSP that carefully skews the empirical transitions and perturbs the empirical costs with an exploration bonus to guarantee both optimism and convergence of the associated value iteration scheme. We prove that EB-SSP achieves the minimax regret rate $\widetilde{O}(B_{\star} \sqrt{S A K})$, where $K$ is the number of episodes, $S$ is the number of states, $A$ is the number of actions and $B_{\star}$ bounds the expected cumulative cost of the optimal policy from any state, thus closing the gap with the lower bound. Interestingly, EB-SSP obtains this result while being parameter-free, i.e., it does not require any prior knowledge of $B_{\star}$, nor of $T_{\star}$ which bounds the expected time-to-goal of the optimal policy from any state. Furthermore, we illustrate various cases (e.g., positive costs, or general costs when an order-accurate estimate of $T_{\star}$ is available) where the regret only contains a logarithmic dependence on $T_{\star}$, thus yielding the first horizon-free regret bound beyond the finite-horizon MDP setting.

Modern online advertising systems inevitably rely on personalization methods, such as click-through rate (CTR) prediction. Recent progress in CTR prediction enjoys the rich representation capabilities of deep learning and achieves great success in large-scale industrial applications. However, these methods can suffer from lack of exploration. Another line of prior work addresses the exploration-exploitation trade-off problem with contextual bandit methods, which are less studied in the industry recently due to the difficulty in extending their flexibility with deep models. In this paper, we propose a novel Deep Uncertainty-Aware Learning (DUAL) method to learn deep CTR models based on Gaussian processes, which can provide efficient uncertainty estimations along with the CTR predictions while maintaining the flexibility of deep neural networks. By linking the ability to estimate predictive uncertainties of DUAL to well-known bandit algorithms, we further present DUAL-based Ad-ranking strategies to boost up long-term utilities such as the social welfare in advertising systems. Experimental results on several public datasets demonstrate the effectiveness of our methods. Remarkably, an online A/B test deployed in the Alibaba display advertising platform shows an $8.2\%$ social welfare improvement and an $8.0\%$ revenue lift.

When and why can a neural network be successfully trained? This article provides an overview of optimization algorithms and theory for training neural networks. First, we discuss the issue of gradient explosion/vanishing and the more general issue of undesirable spectrum, and then discuss practical solutions including careful initialization and normalization methods. Second, we review generic optimization methods used in training neural networks, such as SGD, adaptive gradient methods and distributed methods, and theoretical results for these algorithms. Third, we review existing research on the global issues of neural network training, including results on bad local minima, mode connectivity, lottery ticket hypothesis and infinite-width analysis.

北京阿比特科技有限公司