亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Social reward as a form of community recognition provides a strong source of motivation for users of online platforms to engage and contribute with content. The recent progress of text-conditioned image synthesis has ushered in a collaborative era where AI empowers users to craft original visual artworks seeking community validation. Nevertheless, assessing these models in the context of collective community preference introduces distinct challenges. Existing evaluation methods predominantly center on limited size user studies guided by image quality and prompt alignment. This work pioneers a paradigm shift, unveiling Social Reward - an innovative reward modeling framework that leverages implicit feedback from social network users engaged in creative editing of generated images. We embark on an extensive journey of dataset curation and refinement, drawing from Picsart: an online visual creation and editing platform, yielding a first million-user-scale dataset of implicit human preferences for user-generated visual art named Picsart Image-Social. Our analysis exposes the shortcomings of current metrics in modeling community creative preference of text-to-image models' outputs, compelling us to introduce a novel predictive model explicitly tailored to address these limitations. Rigorous quantitative experiments and user study show that our Social Reward model aligns better with social popularity than existing metrics. Furthermore, we utilize Social Reward to fine-tune text-to-image models, yielding images that are more favored by not only Social Reward, but also other established metrics. These findings highlight the relevance and effectiveness of Social Reward in assessing community appreciation for AI-generated artworks, establishing a closer alignment with users' creative goals: creating popular visual art. Codes can be accessed at //github.com/Picsart-AI-Research/Social-Reward

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · IP · 可約的 · 估計/估計量 · TOOLS ·
2024 年 3 月 28 日

Internet platforms depend on accurately determining the geographical locations of online users to deliver targeted services (e.g., advertising). The advent of decentralized platforms (blockchains) emphasizes the importance of geographically distributed nodes, making the validation of locations more crucial. In these decentralized settings, mutually non-trusting participants need to {\em prove} their locations to each other. The incentives for claiming desired location include decentralization properties (validators of a blockchain), explicit rewards for improving coverage (physical infrastructure blockchains) and regulatory compliance -- and entice participants towards prevaricating their true location malicious via VPNs, tampering with internet delays, or compromising other parties (challengers) to misrepresent their location. Traditional delay-based geolocation methods focus on reducing the noise in measurements and are very vulnerable to wilful divergences from prescribed protocol. In this paper we use Internet delay measurements to securely prove the location of IP addresses while being immune to a large fraction of Byzantine actions. Our core methods are to endow Internet telemetry tools (e.g., ping) with cryptographic primitives (signatures and hash functions) together with Byzantine resistant data inferences subject to Euclidean geometric constraints. We introduce two new networking protocols, robust against Byzantine actions: Proof of Internet Geometry (PoIG) converts delay measurements into precise distance estimates across the Internet; Proof of Location (PoLoc) enables accurate and efficient multilateration of a specific IP address. The key algorithmic innovations are in conducting ``Byzantine fortified trigonometry" (BFT) inferences of data, endowing low rank matrix completion methods with Byzantine resistance.

To address the global issue of hateful content proliferating in online platforms, hate speech detection (HSD) models are typically developed on datasets collected in the United States, thereby failing to generalize to English dialects from the Majority World. Furthermore, HSD models are often evaluated on curated samples, raising concerns about overestimating model performance in real-world settings. In this work, we introduce NaijaHate, the first dataset annotated for HSD which contains a representative sample of Nigerian tweets. We demonstrate that HSD evaluated on biased datasets traditionally used in the literature largely overestimates real-world performance on representative data. We also propose NaijaXLM-T, a pretrained model tailored to the Nigerian Twitter context, and establish the key role played by domain-adaptive pretraining and finetuning in maximizing HSD performance. Finally, we show that in this context, a human-in-the-loop approach to content moderation where humans review 1% of Nigerian tweets flagged as hateful would enable to moderate 60% of all hateful content. Taken together, these results pave the way towards robust HSD systems and a better protection of social media users from hateful content in low-resource settings.

Most current recommender systems primarily focus on what to recommend, assuming users always require personalized recommendations. However, with the widely spread of ChatGPT and other chatbots, a more crucial problem in the context of conversational systems is how to minimize user disruption when we provide recommendation services for users. While previous research has extensively explored different user intents in dialogue systems, fewer efforts are made to investigate whether recommendations should be provided. In this paper, we formally define the recommendability identification problem, which aims to determine whether recommendations are necessary in a specific scenario. First, we propose and define the recommendability identification task, which investigates the need for recommendations in the current conversational context. A new dataset is constructed. Subsequently, we discuss and evaluate the feasibility of leveraging pre-trained language models (PLMs) for recommendability identification. Finally, through comparative experiments, we demonstrate that directly employing PLMs with zero-shot results falls short of meeting the task requirements. Besides, fine-tuning or utilizing soft prompt techniques yields comparable results to traditional classification methods. Our work is the first to study recommendability before recommendation and provides preliminary ways to make it a fundamental component of the future recommendation system.

The rise of social media platforms has led to an increase in polarised online discussions, especially on political and socio-cultural topics such as elections and climate change. We propose a simple and novel unsupervised method to predict whether the authors of two posts agree or disagree, leveraging user stances about named entities obtained from their posts. We present STEntConv, a model which builds a graph of users and named entities weighted by stance and trains a Signed Graph Convolutional Network (SGCN) to detect disagreement between comment and reply posts. We run experiments and ablation studies and show that including this information improves disagreement detection performance on a dataset of Reddit posts for a range of controversial subreddit topics, without the need for platform-specific features or user history.

As user behaviors become complicated on business platforms, online recommendations focus more on how to touch the core conversions, which are highly related to the interests of platforms. These core conversions are usually continuous targets, such as \textit{watch time}, \textit{revenue}, and so on, whose predictions can be enhanced by previous discrete conversion actions. Therefore, multi-task learning (MTL) can be adopted as the paradigm to learn these hybrid targets. However, existing works mainly emphasize investigating the sequential dependence among discrete conversion actions, which neglects the complexity of dependence between discrete conversions and the final continuous conversion. Moreover, simultaneously optimizing hybrid tasks with stronger task dependence will suffer from volatile issues where the core regression task might have a larger influence on other tasks. In this paper, we study the MTL problem with hybrid targets for the first time and propose the model named Hybrid Targets Learning Network (HTLNet) to explore task dependence and enhance optimization. Specifically, we introduce label embedding for each task to explicitly transfer the label information among these tasks, which can effectively explore logical task dependence. We also further design the gradient adjustment regime between the final regression task and other classification tasks to enhance the optimization. Extensive experiments on two offline public datasets and one real-world industrial dataset are conducted to validate the effectiveness of HTLNet. Moreover, online A/B tests on the financial recommender system also show our model has superior improvement.

Efficient path planning for autonomous mobile robots is a critical problem across numerous domains, where optimizing both time and energy consumption is paramount. This paper introduces a novel methodology that considers the dynamic influence of an environmental flow field and considers geometric constraints, including obstacles and forbidden zones, enriching the complexity of the planning problem. We formulate it as a multi-objective optimal control problem, propose a novel transformation called Harmonic Transformation, and apply a semi-Lagrangian scheme to solve it. The set of Pareto efficient solutions is obtained considering two distinct approaches: a deterministic method and an evolutionary-based one, both of which are designed to make use of the proposed Harmonic Transformation. Through an extensive analysis of these approaches, we demonstrate their efficacy in finding optimized paths.

The impressive performance of large language models (LLMs) on code-related tasks has shown the potential of fully automated software development. In light of this, we introduce a new software engineering task, namely Natural Language to code Repository (NL2Repo). This task aims to generate an entire code repository from its natural language requirements. To address this task, we propose a simple yet effective framework CodeS, which decomposes NL2Repo into multiple sub-tasks by a multi-layer sketch. Specifically, CodeS includes three modules: RepoSketcher, FileSketcher, and SketchFiller. RepoSketcher first generates a repository's directory structure for given requirements; FileSketcher then generates a file sketch for each file in the generated structure; SketchFiller finally fills in the details for each function in the generated file sketch. To rigorously assess CodeS on the NL2Repo task, we carry out evaluations through both automated benchmarking and manual feedback analysis. For benchmark-based evaluation, we craft a repository-oriented benchmark, SketchEval, and design an evaluation metric, SketchBLEU. For feedback-based evaluation, we develop a VSCode plugin for CodeS and engage 30 participants in conducting empirical studies. Extensive experiments prove the effectiveness and practicality of CodeS on the NL2Repo task.

As Machine Learning systems become increasingly popular across diverse application domains, including those with direct human implications, the imperative of equity and algorithmic fairness has risen to prominence in the Artificial Intelligence community. On the other hand, in the context of Shared Micromobility Systems, the exploration of fairness-oriented approaches remains limited. Addressing this gap, we introduce a pioneering investigation into the balance between performance optimization and algorithmic fairness in the operation and control of Shared Micromobility Services. Our study leverages the Q-Learning algorithm in Reinforcement Learning, benefiting from its convergence guarantees to ensure the robustness of our proposed approach. Notably, our methodology stands out for its ability to achieve equitable outcomes, as measured by the Gini index, across different station categories--central, peripheral, and remote. Through strategic rebalancing of vehicle distribution, our approach aims to maximize operator performance while simultaneously upholding fairness principles for users. In addition to theoretical insights, we substantiate our findings with a case study or simulation based on synthetic data, validating the efficacy of our approach. This paper underscores the critical importance of fairness considerations in shaping control strategies for Shared Micromobility Services, offering a pragmatic framework for enhancing equity in urban transportation systems.

The advent of Transformers has revolutionized computer vision, offering a powerful alternative to convolutional neural networks (CNNs), especially with the local attention mechanism that excels at capturing local structures within the input and achieve state-of-the-art performance. Processing in-memory (PIM) architecture offers extensive parallelism, low data movement costs, and scalable memory bandwidth, making it a promising solution to accelerate Transformer with memory-intensive operations. However, the crucial challenge lies in efficiently deploying the entire model onto a resource-limited PIM system while parallelizing each transformer block with potentially many computational branches based on local attention mechanisms. We present Allspark, which focuses on workload orchestration for visual Transformers on PIM systems, aiming at minimizing inference latency. Firstly, to fully utilize the massive parallelism of PIM, Allspark empolys a finer-grained partitioning scheme for computational branches, and format a systematic layout and interleaved dataflow with maximized data locality and reduced data movement. Secondly, Allspark formulates the scheduling of the complete model on a resource-limited distributed PIM system as an integer linear programming (ILP) problem. Thirdly, as local-global data interactions exhibit complex yet regular dependencies, Allspark provides a greedy-based mapping method to allocate computational branches onto the PIM system and minimize NoC communication costs. Extensive experiments on 3D-stacked DRAM-based PIM systems show that Allspark brings 1.2x-24.0x inference speedup for various visual Transformers over baselines, and that Allspark-enriched PIM system yields average speedups of 2.3x and energy savings of 20x-55x over Nvidia V100 GPU.

User engagement is a critical metric for evaluating the quality of open-domain dialogue systems. Prior work has focused on conversation-level engagement by using heuristically constructed features such as the number of turns and the total time of the conversation. In this paper, we investigate the possibility and efficacy of estimating utterance-level engagement and define a novel metric, {\em predictive engagement}, for automatic evaluation of open-domain dialogue systems. Our experiments demonstrate that (1) human annotators have high agreement on assessing utterance-level engagement scores; (2) conversation-level engagement scores can be predicted from properly aggregated utterance-level engagement scores. Furthermore, we show that the utterance-level engagement scores can be learned from data. These scores can improve automatic evaluation metrics for open-domain dialogue systems, as shown by correlation with human judgements. This suggests that predictive engagement can be used as a real-time feedback for training better dialogue models.

北京阿比特科技有限公司