亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

It is well known that the quasi-optimality of the Galerkin finite element method for the Helmholtz equation is dependent on the mesh size and the wave-number. In literature, different criteria have been proposed to ensure quasi-optimality. Often these criteria are difficult to obtain and depend on wave-number explicit regularity estimates. In the present work, we focus on criteria based on T-coercivity and weak T-coercivity, which highlight mesh size dependence on the gap between the square of the wavenumber and Laplace eigenvalues. We also propose an adaptive scheme, coupled with a residual-based indicator, for optimal mesh generation with minimal degrees of freedom.

相關內容

The study of neural operators has paved the way for the development of efficient approaches for solving partial differential equations (PDEs) compared with traditional methods. However, most of the existing neural operators lack the capability to provide uncertainty measures for their predictions, a crucial aspect, especially in data-driven scenarios with limited available data. In this work, we propose a novel Neural Operator-induced Gaussian Process (NOGaP), which exploits the probabilistic characteristics of Gaussian Processes (GPs) while leveraging the learning prowess of operator learning. The proposed framework leads to improved prediction accuracy and offers a quantifiable measure of uncertainty. The proposed framework is extensively evaluated through experiments on various PDE examples, including Burger's equation, Darcy flow, non-homogeneous Poisson, and wave-advection equations. Furthermore, a comparative study with state-of-the-art operator learning algorithms is presented to highlight the advantages of NOGaP. The results demonstrate superior accuracy and expected uncertainty characteristics, suggesting the promising potential of the proposed framework.

This paper studies a quantum simulation technique for solving the Fokker-Planck equation. Traditional semi-discretization methods often fail to preserve the underlying Hamiltonian dynamics and may even modify the Hamiltonian structure, particularly when incorporating boundary conditions. We address this challenge by employing the Schrodingerization method-it converts any linear partial and ordinary differential equation with non-Hermitian dynamics into systems of Schrodinger-type equations. We explore the application in two distinct forms of the Fokker-Planck equation. For the conservation form, we show that the semi-discretization-based Schrodingerization is preferable, especially when dealing with non-periodic boundary conditions. Additionally, we analyze the Schrodingerization approach for unstable systems that possess positive eigenvalues in the real part of the coefficient matrix or differential operator. Our analysis reveals that the direct use of Schrodingerization has the same effect as a stabilization procedure. For the heat equation form, we propose a quantum simulation procedure based on the time-splitting technique. We discuss the relationship between operator splitting in the Schrodingerization method and its application directly to the original problem, illustrating how the Schrodingerization method accurately reproduces the time-splitting solutions at each step. Furthermore, we explore finite difference discretizations of the heat equation form using shift operators. Utilizing Fourier bases, we diagonalize the shift operators, enabling efficient simulation in the frequency space. Providing additional guidance on implementing the diagonal unitary operators, we conduct a comparative analysis between diagonalizations in the Bell and the Fourier bases, and show that the former generally exhibits greater efficiency than the latter.

A novel strategy is proposed for the coupling of field and circuit equations when modeling power devices in the low-frequency regime. The resulting systems of differential-algebraic equations have a particular geometric structure which explicitly encodes the energy storage, dissipation, and transfer mechanisms. This implies a power balance on the continuous level which can be preserved under appropriate discretization in space and time. The models and main results are presented in detail for linear constitutive models, but the extension to nonlinear elements and more general coupling mechanisms is possible. The theoretical findings are demonstrated by numerical results.

This paper introduces a second-order method for solving general elliptic partial differential equations (PDEs) on irregular domains using GPU acceleration, based on Ying's kernel-free boundary integral (KFBI) method. The method addresses limitations imposed by CFL conditions in explicit schemes and accuracy issues in fully implicit schemes for the Laplacian operator. To overcome these challenges, the paper employs a series of second-order time discrete schemes and splits the Laplacian operator into explicit and implicit components. Specifically, the Crank-Nicolson method discretizes the heat equation in the temporal dimension, while the implicit scheme is used for the wave equation. The Schrodinger equation is treated using the Strang splitting method. By discretizing the temporal dimension implicitly, the heat, wave, and Schrodinger equations are transformed into a sequence of elliptic equations. The Laplacian operator on the right-hand side of the elliptic equation is obtained from the numerical scheme rather than being discretized and corrected by the five-point difference method. A Cartesian grid-based KFBI method is employed to solve the resulting elliptic equations. GPU acceleration, achieved through a parallel Cartesian grid solver, enhances the computational efficiency by exploiting high degrees of parallelism. Numerical results demonstrate that the proposed method achieves second-order accuracy for the heat, wave, and Schrodinger equations. Furthermore, the GPU-accelerated solvers for the three types of time-dependent equations exhibit a speedup of 30 times compared to CPU-based solvers.

Solving high-dimensional partial differential equations necessitates methods free of exponential scaling in the dimension of the problem. This work introduces a tensor network approach for the Kolmogorov backward equation via approximating directly the Markov operator. We show that the high-dimensional Markov operator can be obtained under a functional hierarchical tensor (FHT) ansatz with a hierarchical sketching algorithm. When the terminal condition admits an FHT ansatz, the proposed operator outputs an FHT ansatz for the PDE solution through an efficient functional tensor network contraction procedure. In addition, the proposed operator-based approach also provides an efficient way to solve the Kolmogorov forward equation when the initial distribution is in an FHT ansatz. We apply the proposed approach successfully to two challenging time-dependent Ginzburg-Landau models with hundreds of variables.

To integrate large systems of nonlinear differential equations in time, we consider a variant of nonlinear waveform relaxation (also known as dynamic iteration or Picard-Lindel\"of iteration), where at each iteration a linear inhomogeneous system of differential equations has to be solved. This is done by the exponential block Krylov subspace (EBK) method. Thus, we have an inner-outer iterative method, where iterative approximations are determined over a certain time interval, with no time stepping involved. This approach has recently been shown to be efficient as a time-parallel integrator within the PARAEXP framework. In this paper, convergence behavior of this method is assessed theoretically and practically. We examine efficiency of the method by testing it on nonlinear Burgers, three-dimensional Liouville-Bratu-Gelfand, and three-dimensional nonlinear heat conduction equations and comparing its performance with that of conventional time-stepping integrators.

This work presents a new algorithm to compute the matrix exponential within a given tolerance. Combined with the scaling and squaring procedure, the algorithm incorporates Taylor, partitioned and classical Pad\'e methods shown to be superior in performance to the approximants used in state-of-the-art software. The algorithm computes matrix--matrix products and also matrix inverses, but it can be implemented to avoid the computation of inverses, making it convenient for some problems. If the matrix A belongs to a Lie algebra, then exp(A) belongs to its associated Lie group, being a property which is preserved by diagonal Pad\'e approximants, and the algorithm has another option to use only these. Numerical experiments show the superior performance with respect to state-of-the-art implementations.

The demagnetization field in micromagnetism is given as the gradient of a potential which solves a partial differential equation (PDE) posed in R^d. In its most general form, this PDE is supplied with continuity condition on the boundary of the magnetic domain and the equation includes a discontinuity in the gradient of the potential over the boundary. Typical numerical algorithms to solve this problem relies on the representation of the potential via the Green's function, where a volume and a boundary integral terms need to be accurately approximated. From a computational point of view, the volume integral dominates the computational cost and can be difficult to approximate due to the singularities of the Green's function. In this article, we propose a hybrid model, where the overall potential can be approximated by solving two uncoupled PDEs posed in bounded domains, whereby the boundary conditions of one of the PDEs is obtained by a low cost boundary integral. Moreover, we provide a convergence analysis of the method under two separate theoretical settings; periodic magnetisation, and high-frequency magnetisation. Numerical examples are given to verify the convergence rates.

This paper studies the convergence of a spatial semidiscretization of a three-dimensional stochastic Allen-Cahn equation with multiplicative noise. For non-smooth initial values, the regularity of the mild solution is investigated, and an error estimate is derived with the spatial $ L^2 $-norm. For smooth initial values, two error estimates with the general spatial $ L^q $-norms are established.

In this paper, by using $|x|=2\max\{0,x\}-x$, a class of maximum-based iteration methods is established to solve the generalized absolute value equation $Ax-B|x|=b$. Some convergence conditions of the proposed method are presented. By some numerical experiments, the effectiveness and feasibility of the proposed method are confirmed.

北京阿比特科技有限公司