亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Despite the rich literature on machine learning fairness, relatively little attention has been paid to remediating complex systems, where the final prediction is the combination of multiple classifiers and where multiple groups are present. In this paper, we first show that natural baseline approaches for improving equal opportunity fairness scale linearly with the product of the number of remediated groups and the number of remediated prediction labels, rendering them impractical. We then introduce two simple techniques, called {\em task-overconditioning} and {\em group-interleaving}, to achieve a constant scaling in this multi-group multi-label setup. Our experimental results in academic and real-world environments demonstrate the effectiveness of our proposal at mitigation within this environment.

相關內容

We propose the geometry-informed neural operator (GINO), a highly efficient approach to learning the solution operator of large-scale partial differential equations with varying geometries. GINO uses a signed distance function and point-cloud representations of the input shape and neural operators based on graph and Fourier architectures to learn the solution operator. The graph neural operator handles irregular grids and transforms them into and from regular latent grids on which Fourier neural operator can be efficiently applied. GINO is discretization-convergent, meaning the trained model can be applied to arbitrary discretization of the continuous domain and it converges to the continuum operator as the discretization is refined. To empirically validate the performance of our method on large-scale simulation, we generate the industry-standard aerodynamics dataset of 3D vehicle geometries with Reynolds numbers as high as five million. For this large-scale 3D fluid simulation, numerical methods are expensive to compute surface pressure. We successfully trained GINO to predict the pressure on car surfaces using only five hundred data points. The cost-accuracy experiments show a $26,000 \times$ speed-up compared to optimized GPU-based computational fluid dynamics (CFD) simulators on computing the drag coefficient. When tested on new combinations of geometries and boundary conditions (inlet velocities), GINO obtains a one-fourth reduction in error rate compared to deep neural network approaches.

Serverless computing (FaaS) has been extensively utilized for deep learning (DL) inference due to the ease of deployment and pay-per-use benefits. However, existing FaaS platforms utilize GPUs in a coarse manner for DL inferences, without taking into account spatio-temporal resource multiplexing and isolation, which results in severe GPU under-utilization, high usage expenses, and SLO (Service Level Objectives) violation. There is an imperative need to enable an efficient and SLO-aware GPU-sharing mechanism in serverless computing to facilitate cost-effective DL inferences. In this paper, we propose \textbf{FaST-GShare}, an efficient \textit{\textbf{Fa}aS-oriented \textbf{S}patio-\textbf{T}emporal \textbf{G}PU \textbf{Sharing}} architecture for deep learning inferences. In the architecture, we introduce the FaST-Manager to limit and isolate spatio-temporal resources for GPU multiplexing. In order to realize function performance, the automatic and flexible FaST-Profiler is proposed to profile function throughput under various resource allocations. Based on the profiling data and the isolation mechanism, we introduce the FaST-Scheduler with heuristic auto-scaling and efficient resource allocation to guarantee function SLOs. Meanwhile, FaST-Scheduler schedules function with efficient GPU node selection to maximize GPU usage. Furthermore, model sharing is exploited to mitigate memory contention. Our prototype implementation on the OpenFaaS platform and experiments on MLPerf-based benchmark prove that FaST-GShare can ensure resource isolation and function SLOs. Compared to the time sharing mechanism, FaST-GShare can improve throughput by 3.15x, GPU utilization by 1.34x, and SM (Streaming Multiprocessor) occupancy by 3.13x on average.

Transparency and accountability are indispensable principles for modern data protection, from both, legal and technical viewpoints. Regulations such as the GDPR, therefore, require specific transparency information to be provided including, e.g., purpose specifications, storage periods, or legal bases for personal data processing. However, it has repeatedly been shown that all too often, this information is practically hidden in legalese privacy policies, hindering data subjects from exercising their rights. This paper presents a novel approach to enable large-scale transparency information analysis across service providers, leveraging machine-readable formats and graph data science methods. More specifically, we propose a general approach for building a transparency analysis platform (TAP) that is used to identify data transfers empirically, provide evidence-based analyses of sharing clusters of more than 70 real-world data controllers, or even to simulate network dynamics using synthetic transparency information for large-scale data-sharing scenarios. We provide the general approach for advanced transparency information analysis, an open source architecture and implementation in the form of a queryable analysis platform, and versatile analysis examples. These contributions pave the way for more transparent data processing for data subjects, and evidence-based enforcement processes for data protection authorities. Future work can build upon our contributions to gain more insights into so-far hidden data-sharing practices.

A long-standing goal of reinforcement learning is to acquire agents that can learn on training tasks and generalize well on unseen tasks that may share a similar dynamic but with different reward functions. A general challenge is to quantitatively measure the similarities between these different tasks, which is vital for analyzing the task distribution and further designing algorithms with stronger generalization. To address this, we present a novel metric named Task Distribution Relevance (TDR) via optimal Q functions of different tasks to capture the relevance of the task distribution quantitatively. In the case of tasks with a high TDR, i.e., the tasks differ significantly, we show that the Markovian policies cannot differentiate them, leading to poor performance. Based on this insight, we encode all historical information into policies for distinguishing different tasks and propose Task Aware Dreamer (TAD), which extends world models into our reward-informed world models to capture invariant latent features over different tasks. In TAD, we calculate the corresponding variational lower bound of the data log-likelihood, including a novel term to distinguish different tasks via states, to optimize reward-informed world models. Extensive experiments in both image-based control tasks and state-based control tasks demonstrate that TAD can significantly improve the performance of handling different tasks simultaneously, especially for those with high TDR, and demonstrate a strong generalization ability to unseen tasks.

The Tucker decomposition, an extension of singular value decomposition for higher-order tensors, is a useful tool in analysis and compression of large-scale scientific data. While it has been studied extensively for static datasets, there are relatively few works addressing the computation of the Tucker factorization of streaming data tensors. In this paper we propose a new streaming Tucker algorithm tailored for scientific data, specifically for the case of a data tensor whose size increases along a single streaming mode that can grow indefinitely, which is typical of time-stepping scientific applications. At any point of this growth, we seek to compute the Tucker decomposition of the data generated thus far, without requiring storing the past tensor slices in memory. Our algorithm accomplishes this by starting with an initial Tucker decomposition and updating its components--the core tensor and factor matrices--with each new tensor slice as it becomes available, while satisfying a user-specified threshold of norm error. We present an implementation within the TuckerMPI software framework, and apply it to synthetic and combustion simulation datasets. By comparing against the standard (batch) decomposition algorithm we show that our streaming algorithm provides significant improvements in memory usage. If the tensor rank stops growing along the streaming mode, the streaming algorithm also incurs less computational time compared to the batch algorithm.

Statistical approaches that successfully combine multiple datasets are more powerful, efficient, and scientifically informative than separate analyses. To address variation architectures correctly and comprehensively for high-dimensional data across multiple sample sets (i.e., cohorts), we propose multiple augmented reduced rank regression (maRRR), a flexible matrix regression and factorization method to concurrently learn both covariate-driven and auxiliary structured variation. We consider a structured nuclear norm objective that is motivated by random matrix theory, in which the regression or factorization terms may be shared or specific to any number of cohorts. Our framework subsumes several existing methods, such as reduced rank regression and unsupervised multi-matrix factorization approaches, and includes a promising novel approach to regression and factorization of a single dataset (aRRR) as a special case. Simulations demonstrate substantial gains in power from combining multiple datasets, and from parsimoniously accounting for all structured variation. We apply maRRR to gene expression data from multiple cancer types (i.e., pan-cancer) from TCGA, with somatic mutations as covariates. The method performs well with respect to prediction and imputation of held-out data, and provides new insights into mutation-driven and auxiliary variation that is shared or specific to certain cancer types.

The remarkable success of deep learning has prompted interest in its application to medical diagnosis. Even tough state-of-the-art deep learning models have achieved human-level accuracy on the classification of different types of medical data, these models are hardly adopted in clinical workflows, mainly due to their lack of interpretability. The black-box-ness of deep learning models has raised the need for devising strategies to explain the decision process of these models, leading to the creation of the topic of eXplainable Artificial Intelligence (XAI). In this context, we provide a thorough survey of XAI applied to medical diagnosis, including visual, textual, and example-based explanation methods. Moreover, this work reviews the existing medical imaging datasets and the existing metrics for evaluating the quality of the explanations . Complementary to most existing surveys, we include a performance comparison among a set of report generation-based methods. Finally, the major challenges in applying XAI to medical imaging are also discussed.

The existence of representative datasets is a prerequisite of many successful artificial intelligence and machine learning models. However, the subsequent application of these models often involves scenarios that are inadequately represented in the data used for training. The reasons for this are manifold and range from time and cost constraints to ethical considerations. As a consequence, the reliable use of these models, especially in safety-critical applications, is a huge challenge. Leveraging additional, already existing sources of knowledge is key to overcome the limitations of purely data-driven approaches, and eventually to increase the generalization capability of these models. Furthermore, predictions that conform with knowledge are crucial for making trustworthy and safe decisions even in underrepresented scenarios. This work provides an overview of existing techniques and methods in the literature that combine data-based models with existing knowledge. The identified approaches are structured according to the categories integration, extraction and conformity. Special attention is given to applications in the field of autonomous driving.

Data augmentation, the artificial creation of training data for machine learning by transformations, is a widely studied research field across machine learning disciplines. While it is useful for increasing the generalization capabilities of a model, it can also address many other challenges and problems, from overcoming a limited amount of training data over regularizing the objective to limiting the amount data used to protect privacy. Based on a precise description of the goals and applications of data augmentation (C1) and a taxonomy for existing works (C2), this survey is concerned with data augmentation methods for textual classification and aims to achieve a concise and comprehensive overview for researchers and practitioners (C3). Derived from the taxonomy, we divided more than 100 methods into 12 different groupings and provide state-of-the-art references expounding which methods are highly promising (C4). Finally, research perspectives that may constitute a building block for future work are given (C5).

The inductive biases of graph representation learning algorithms are often encoded in the background geometry of their embedding space. In this paper, we show that general directed graphs can be effectively represented by an embedding model that combines three components: a pseudo-Riemannian metric structure, a non-trivial global topology, and a unique likelihood function that explicitly incorporates a preferred direction in embedding space. We demonstrate the representational capabilities of this method by applying it to the task of link prediction on a series of synthetic and real directed graphs from natural language applications and biology. In particular, we show that low-dimensional cylindrical Minkowski and anti-de Sitter spacetimes can produce equal or better graph representations than curved Riemannian manifolds of higher dimensions.

北京阿比特科技有限公司