For organizations to survive and flourish in the long term, innovation and novelty must be continually introduced, which is particularly true in today's rapidly changing world. This raises a variety of ethical and sustainability considerations that seldom receive the attention they deserve. Existing innovation adoption frameworks often focus on technological, organizational, environmental, and social factors impacting adoption. In this chapter, we explore the ethical and sustainability angles, particularly as they relate to emerging technologies, artificial intelligence (AI) being a prominent example. We consider how to facilitate the development and cultivation of innovation cultures in organizations, including budding startups as well as established enterprises, through approaches such as systems thinking.
Homophily and social influence are two key concepts of social network analysis. Distinguishing between these phenomena is difficult, and approaches to disambiguate the two have been primarily limited to longitudinal data analyses. In this study, we provide sufficient conditions for valid estimation of social influence through cross-sectional data, leading to a novel homophily-adjusted social influence model which addresses the backdoor pathway of latent homophilic features. The oft-used network autocorrelation model (NAM) is the special case of our proposed model with no latent homophily, suggesting that the NAM is only valid when all homophilic attributes are observed. We conducted an extensive simulation study to evaluate the performance of our proposed homophily-adjusted model, comparing its results with those from the conventional NAM. Our findings shed light on the nuanced dynamics of social networks, presenting a valuable tool for researchers seeking to estimate the effects of social influence while accounting for homophily. Code to implement our approach is available at //github.com/hanhtdpham/hanam.
Various approaches to iterative refinement (IR) for least-squares problems have been proposed in the literature and it may not be clear which approach is suitable for a given problem. We consider three approaches to IR for least-squares problems when two precisions are used and review their theoretical guarantees, known shortcomings and when the method can be expected to recognize that the correct solution has been found, and extend uniform precision analysis for an IR approach based on the semi-normal equations to the two-precision case. We focus on the situation where it is desired to refine the solution to the working precision level. It is shown that the IR methods exhibit different sensitivities to the conditioning of the problem and the size of the least-squares residual, which should be taken into account when choosing the IR approach. We also discuss a new approach that is based on solving multiple least-squares problems.
In class-incremental learning, an agent with limited resources needs to learn a sequence of classification tasks, forming an ever growing classification problem, with the constraint of not being able to access data from previous tasks. The main difference with task-incremental learning, where a task-ID is available at inference time, is that the learner also needs to perform cross-task discrimination, i.e. distinguish between classes that have not been seen together. Approaches to tackle this problem are numerous and mostly make use of an external memory (buffer) of non-negligible size. In this paper, we ablate the learning of cross-task features and study its influence on the performance of basic replay strategies used for class-IL. We also define a new forgetting measure for class-incremental learning, and see that forgetting is not the principal cause of low performance. Our experimental results show that future algorithms for class-incremental learning should not only prevent forgetting, but also aim to improve the quality of the cross-task features, and the knowledge transfer between tasks. This is especially important when tasks contain limited amount of data.
Computability on uncountable sets has no standard formalization, unlike that on countable sets, which is given by Turing machines. Some of the approaches to define computability in these sets rely on order-theoretic structures to translate such notions from Turing machines to uncountable spaces. Since these machines are used as a baseline for computability in these approaches, countability restrictions on the ordered structures are fundamental. Here, we show several relations between the usual countability restrictions in order-theoretic theories of computability and some more common order-theoretic countability constraints, like order density properties and functional characterizations of the order structure in terms of multi-utilities. As a result, we show how computability can be introduced in some order structures via countability order density and multi-utility constraints.
Ordinal pattern dependence has been introduced in order to capture co-monotonic behavior between two time series. This concept has several features one would intuitively demand from a dependence measure. It was believed that ordinal pattern dependence satisfies the axioms which Grothe et al. (Journal of Multivariate Analysis 123, 2014) proclaimed for a multivariate measure of dependence. In the present article we show that this is not true and that there is a mistake in the article Betken et al. (Journal of Multivariate Analysis 186, 2021). Furthermore we show that ordinal pattern dependence satisfies a slightly modified set of axioms.
Regression methods dominate the practice of biostatistical analysis, but biostatistical training emphasises the details of regression models and methods ahead of the purposes for which such modelling might be useful. More broadly, statistics is widely understood to provide a body of techniques for "modelling data", underpinned by what we describe as the "true model myth": that the task of the statistician/data analyst is to build a model that closely approximates the true data generating process. By way of our own historical examples and a brief review of mainstream clinical research journals, we describe how this perspective has led to a range of problems in the application of regression methods, including misguided "adjustment" for covariates, misinterpretation of regression coefficients and the widespread fitting of regression models without a clear purpose. We then outline a new approach to the teaching and application of biostatistical methods, which situates them within a framework that first requires clear definition of the substantive research question at hand within one of three categories: descriptive, predictive, or causal. Within this approach, the simple univariable regression model may be introduced as a tool for description, while the development and application of multivariable regression models as well as other advanced biostatistical methods should proceed differently according to the type of question. Regression methods will no doubt remain central to statistical practice as they provide a powerful tool for representing variation in a response or outcome variable as a function of "input" variables, but their conceptualisation and usage should follow from the purpose at hand.
As quantum theory allows for information processing and computing tasks that otherwise are not possible with classical systems, there is a need and use of quantum Internet beyond existing network systems. At the same time, the realization of a desirably functional quantum Internet is hindered by fundamental and practical challenges such as high loss during transmission of quantum systems, decoherence due to interaction with the environment, fragility of quantum states, etc. We study the implications of these constraints by analyzing the limitations on the scaling and robustness of quantum Internet. Considering quantum networks, we present practical bottlenecks for secure communication, delegated computing, and resource distribution among end nodes. Motivated by the power of abstraction in graph theory (in association with quantum information theory), we consider graph-theoretic quantifiers to assess network robustness and provide critical values of communication lines for viable communication over quantum Internet. In particular, we begin by discussing limitations on usefulness of isotropic states as device-independent quantum key repeaters which otherwise could be useful for device-independent quantum key distribution. We consider some quantum networks of practical interest, ranging from satellite-based networks connecting far-off spatial locations to currently available quantum processor architectures within computers, and analyze their robustness to perform quantum information processing tasks. Some of these tasks form primitives for delegated quantum computing, e.g., entanglement distribution and quantum teleportation. For some examples of quantum networks, we present algorithms to perform different quantum network tasks of interest such as constructing the network structure, finding the shortest path between a pair of end nodes, and optimizing the flow of resources at a node.
Through an uncertainty quantification (UQ) perspective, we show that score-based generative models (SGMs) are provably robust to the multiple sources of error in practical implementation. Our primary tool is the Wasserstein uncertainty propagation (WUP) theorem, a model-form UQ bound that describes how the $L^2$ error from learning the score function propagates to a Wasserstein-1 ($\mathbf{d}_1$) ball around the true data distribution under the evolution of the Fokker-Planck equation. We show how errors due to (a) finite sample approximation, (b) early stopping, (c) score-matching objective choice, (d) score function parametrization expressiveness, and (e) reference distribution choice, impact the quality of the generative model in terms of a $\mathbf{d}_1$ bound of computable quantities. The WUP theorem relies on Bernstein estimates for Hamilton-Jacobi-Bellman partial differential equations (PDE) and the regularizing properties of diffusion processes. Specifically, PDE regularity theory shows that stochasticity is the key mechanism ensuring SGM algorithms are provably robust. The WUP theorem applies to integral probability metrics beyond $\mathbf{d}_1$, such as the total variation distance and the maximum mean discrepancy. Sample complexity and generalization bounds in $\mathbf{d}_1$ follow directly from the WUP theorem. Our approach requires minimal assumptions, is agnostic to the manifold hypothesis and avoids absolute continuity assumptions for the target distribution. Additionally, our results clarify the trade-offs among multiple error sources in SGMs.
Since the weak convergence for stochastic processes does not account for the growth of information over time which is represented by the underlying filtration, a slightly erroneous stochastic model in weak topology may cause huge loss in multi-periods decision making problems. To address such discontinuities Aldous introduced the extended weak convergence, which can fully characterise all essential properties, including the filtration, of stochastic processes; however was considered to be hard to find efficient numerical implementations. In this paper, we introduce a novel metric called High Rank PCF Distance (HRPCFD) for extended weak convergence based on the high rank path development method from rough path theory, which also defines the characteristic function for measure-valued processes. We then show that such HRPCFD admits many favourable analytic properties which allows us to design an efficient algorithm for training HRPCFD from data and construct the HRPCF-GAN by using HRPCFD as the discriminator for conditional time series generation. Our numerical experiments on both hypothesis testing and generative modelling validate the out-performance of our approach compared with several state-of-the-art methods, highlighting its potential in broad applications of synthetic time series generation and in addressing classic financial and economic challenges, such as optimal stopping or utility maximisation problems.
Forecasting has always been at the forefront of decision making and planning. The uncertainty that surrounds the future is both exciting and challenging, with individuals and organisations seeking to minimise risks and maximise utilities. The large number of forecasting applications calls for a diverse set of forecasting methods to tackle real-life challenges. This article provides a non-systematic review of the theory and the practice of forecasting. We provide an overview of a wide range of theoretical, state-of-the-art models, methods, principles, and approaches to prepare, produce, organise, and evaluate forecasts. We then demonstrate how such theoretical concepts are applied in a variety of real-life contexts. We do not claim that this review is an exhaustive list of methods and applications. However, we wish that our encyclopedic presentation will offer a point of reference for the rich work that has been undertaken over the last decades, with some key insights for the future of forecasting theory and practice. Given its encyclopedic nature, the intended mode of reading is non-linear. We offer cross-references to allow the readers to navigate through the various topics. We complement the theoretical concepts and applications covered by large lists of free or open-source software implementations and publicly-available databases.