亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The nonlocal Allen-Cahn equation with nonlocal diffusion operator is a generalization of the classical Allen-Cahn equation. It satisfies the energy dissipation law and maximum bound principle (MBP), and is important for simulating a series of physical and biological phenomena involving long-distance interactions in space. In this paper, we construct first- and second-order (in time) accurate, unconditionally energy stable and MBP-preserving schemes for the nonlocal Allen-Cahn type model based on the stabilized exponential scalar auxiliary variable (sESAV) approach. On the one hand, we have proved the MBP and unconditional energy stability carefully and rigorously in the fully discrete levels. On the other hand, we adopt an efficient FFT-based fast solver to compute the nearly full coefficient matrix generated from the spatial discretization, which improves the computational efficiency. Finally, typical numerical experiments are presented to demonstrate the performance of our proposed schemes.

相關內容

迄今為止,產(chan)品(pin)設計師(shi)最友好的交(jiao)互動畫(hua)軟件。

Solving multiphysics-based inverse problems for geological carbon storage monitoring can be challenging when multimodal time-lapse data are expensive to collect and costly to simulate numerically. We overcome these challenges by combining computationally cheap learned surrogates with learned constraints. Not only does this combination lead to vastly improved inversions for the important fluid-flow property, permeability, it also provides a natural platform for inverting multimodal data including well measurements and active-source time-lapse seismic data. By adding a learned constraint, we arrive at a computationally feasible inversion approach that remains accurate. This is accomplished by including a trained deep neural network, known as a normalizing flow, which forces the model iterates to remain in-distribution, thereby safeguarding the accuracy of trained Fourier neural operators that act as surrogates for the computationally expensive multiphase flow simulations involving partial differential equation solves. By means of carefully selected experiments, centered around the problem of geological carbon storage, we demonstrate the efficacy of the proposed constrained optimization method on two different data modalities, namely time-lapse well and time-lapse seismic data. While permeability inversions from both these two modalities have their pluses and minuses, their joint inversion benefits from either, yielding valuable superior permeability inversions and CO2 plume predictions near, and far away, from the monitoring wells.

Transition amplitudes and transition probabilities are relevant to many areas of physics simulation, including the calculation of response properties and correlation functions. These quantities can also be related to solving linear systems of equations. Here we present three related algorithms for calculating transition probabilities. First, we extend a previously published short-depth algorithm, allowing for the two input states to be non-orthogonal. Building on this first procedure, we then derive a higher-depth algorithm based on Trotterization and Richardson extrapolation that requires fewer circuit evaluations. Third, we introduce a tunable algorithm that allows for trading off circuit depth and measurement complexity, yielding an algorithm that can be tailored to specific hardware characteristics. Finally, we implement proof-of-principle numerics for models in physics and chemistry and for a subroutine in variational quantum linear solving (VQLS). The primary benefits of our approaches are that (a) arbitrary non-orthogonal states may now be used with small increases in quantum resources, (b) we (like another recently proposed method) entirely avoid subroutines such as the Hadamard test that may require three-qubit gates to be decomposed, and (c) in some cases fewer quantum circuit evaluations are required as compared to the previous state-of-the-art in NISQ algorithms for transition probabilities.

This paper introduces novel bulk-surface splitting schemes of first and second order for the wave equation with kinetic and acoustic boundary conditions of semi-linear type. For kinetic boundary conditions, we propose a reinterpretation of the system equations as a coupled system. This means that the bulk and surface dynamics are modeled separately and connected through a coupling constraint. This allows the implementation of splitting schemes, which show first-order convergence in numerical experiments. On the other hand, acoustic boundary conditions naturally separate bulk and surface dynamics. Here, Lie and Strang splitting schemes reach first- and second-order convergence, respectively, as we reveal numerically.

Iterative refinement (IR) is a popular scheme for solving a linear system of equations based on gradually improving the accuracy of an initial approximation. Originally developed to improve upon the accuracy of Gaussian elimination, interest in IR has been revived because of its suitability for execution on fast low-precision hardware such as analog devices and graphics processing units. IR generally converges when the error associated with the solution method is small, but is known to diverge when this error is large. We propose and analyze a novel enhancement to the IR algorithm by adding a line search optimization step that guarantees the algorithm will not diverge. Numerical experiments verify our theoretical results and illustrate the effectiveness of our proposed scheme.

Invariant finite-difference schemes for the one-dimensional shallow water equations in the presence of a magnetic field for various bottom topographies are constructed. Based on the results of the group classification recently carried out by the authors, finite-difference analogues of the conservation laws of the original differential model are obtained. Some typical problems are considered numerically, for which a comparison is made between the cases of a magnetic field presence and when it is absent (the standard shallow water model). The invariance of difference schemes in Lagrangian coordinates and the energy preservation on the obtained numerical solutions are also discussed.

In this paper we introduce a multilevel Picard approximation algorithm for semilinear parabolic partial integro-differential equations (PIDEs). We prove that the numerical approximation scheme converges to the unique viscosity solution of the PIDE under consideration. To that end, we derive a Feynman-Kac representation for the unique viscosity solution of the semilinear PIDE, extending the classical Feynman-Kac representation for linear PIDEs. Furthermore, we show that the algorithm does not suffer from the curse of dimensionality, i.e. the computational complexity of the algorithm is bounded polynomially in the dimension $d$ and the reciprocal of the prescribed accuracy $\varepsilon$. We also provide a numerical example in up to 10'000 dimensions to demonstrate its applicability.

The solutions of scalar ordinary differential equations become more complex as their coefficients increase in magnitude. As a consequence, when a standard solver is applied to such an equation, its running time grows with the magnitudes of the equation's coefficients. It is well known, however, that scalar ordinary differential equations with slowly-varying coefficients admit slowly-varying phase functions whose cost to represent via standard techniques is largely independent of the magnitude of the equation's coefficients. This observation is the basis of most methods for the asymptotic approximation of the solutions of ordinary differential equations, including the WKB method. Here, we introduce two numerical algorithms for constructing phase functions for scalar ordinary differential equations inspired by the classical Levin method for the calculation of oscillatory integrals. In the case of a large class of scalar ordinary differential equations with slowly-varying coefficients, their running times are independent of the magnitude of the equation's coefficients. The results of extensive numerical experiments demonstrating the properties of our algorithms are presented.

In this paper, we develop a domain-decomposition method for the generalized Poisson-Boltzmann equation based on a solvent-excluded surface which is widely used in computational chemistry. The solver requires to solve a generalized screened Poisson (GSP) equation defined in $\mathbb{R}^3$ with a space-dependent dielectric permittivity and an ion-exclusion function that accounts for Steric effects. Potential theory arguments transform the GSP equation into two-coupled equations defined in a bounded domain. Then, the Schwarz decomposition method is used to formulate local problems by decomposing the cavity into overlapping balls and only solving a set of coupled sub-equations in each ball in which, the spherical harmonics and the Legendre polynomials are used as basis functions in the angular and radial directions. A series of numerical experiments are presented to test the method.

This paper presents a numerical method for the simulation of elastic solid materials coupled to fluid inclusions. The application is motivated by the modeling of vascularized tissues and by problems in medical imaging which target the estimation of effective (i.e., macroscale) material properties, taking into account the influence of microscale dynamics, such as fluid flow in the microvasculature. The method is based on the recently proposed Reduced Lagrange Multipliers framework. In particular, the interface between solid and fluid domains is not resolved within the computational mesh for the elastic material but discretized independently, imposing the coupling condition via non-matching Lagrange multipliers. Exploiting the multiscale properties of the problem, the resulting Lagrange multipliers space is reduced to a lower-dimensional characteristic set. We present the details of the stability analysis of the resulting method considering a non-standard boundary condition that enforces a local deformation on the solid-fluid boundary. The method is validated with several numerical examples.

Partial differential equations (PDEs) are used to describe a variety of physical phenomena. Often these equations do not have analytical solutions and numerical approximations are used instead. One of the common methods to solve PDEs is the finite element method. Computing derivative information of the solution with respect to the input parameters is important in many tasks in scientific computing. We extend JAX automatic differentiation library with an interface to Firedrake finite element library. High-level symbolic representation of PDEs allows bypassing differentiating through low-level possibly many iterations of the underlying nonlinear solvers. Differentiating through Firedrake solvers is done using tangent-linear and adjoint equations. This enables the efficient composition of finite element solvers with arbitrary differentiable programs. The code is available at github.com/IvanYashchuk/jax-firedrake.

北京阿比特科技有限公司