亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

A sound field synthesis method enhancing perceptual quality is proposed. Sound field synthesis using multiple loudspeakers enables spatial audio reproduction with a broad listening area; however, synthesis errors at high frequencies called spatial aliasing artifacts are unavoidable. To minimize these artifacts, we propose a method based on the combination of pressure and amplitude matching. On the basis of the human's auditory properties, synthesizing the amplitude distribution will be sufficient for horizontal sound localization. Furthermore, a flat amplitude response should be synthesized as much as possible to avoid coloration. Therefore, we apply amplitude matching, which is a method to synthesize the desired amplitude distribution with arbitrary phase distribution, for high frequencies and conventional pressure matching for low frequencies. Experimental results of numerical simulations and listening tests using a practical system indicated that the perceptual quality of the sound field synthesized by the proposed method was improved from that synthesized by pressure matching.

相關內容

In 5G cellular networks, frequency range 2 (FR2) introduces higher frequencies that cause rapid signal degradation and challenge user mobility. In recent studies, a conditional handover procedure has been adopted as an enhancement to baseline handover to enhance user mobility robustness. In this article, the mobility performance of conditional handover is analyzed for a 5G mm-wave network in FR2 that employs beamforming. In addition, a resource-efficient random access procedure is proposed that increases the probability of contention-free random access during a handover. Moreover, a simple yet effective decision tree-based supervised learning method is proposed to minimize the handover failures that are caused by the beam preparation phase of the random access procedure. Results have shown that a tradeoff exists between contention-free random access and handover failures. It is also seen that the optimum operation point of random access is achievable with the proposed learning algorithm for conditional handover. Moreover, a mobility performance comparison of conditional handover with baseline handover is also carried out. Results have shown that while baseline handover causes fewer handover failures than conditional handover, the total number of mobility failures in the latter is less due to the decoupling of the handover preparation and execution phases.

Controlled execution of dynamic motions in quadrupedal robots, especially those with articulated soft bodies, presents a unique set of challenges that traditional methods struggle to address efficiently. In this study, we tackle these issues by relying on a simple yet effective two-stage learning framework to generate dynamic motions for quadrupedal robots. First, a gradient-free evolution strategy is employed to discover simply represented control policies, eliminating the need for a predefined reference motion. Then, we refine these policies using deep reinforcement learning. Our approach enables the acquisition of complex motions like pronking and back-flipping, effectively from scratch. Additionally, our method simplifies the traditionally labour-intensive task of reward shaping, boosting the efficiency of the learning process. Importantly, our framework proves particularly effective for articulated soft quadrupeds, whose inherent compliance and adaptability make them ideal for dynamic tasks but also introduce unique control challenges.

Previous efforts on reconfigurable analog circuits mostly focused on specialized analog circuits, produced through careful co-design, or on highly reconfigurable, but relatively resource inefficient, accelerators that implement analog compute paradigms. This work deals with an intermediate point in the design space: Specialized reconfigurable circuits for analog compute paradigms. This class of circuits requires new methodologies for performing co-design, as prior techniques are typically highly specialized to conventional circuit classes (e.g., filters, ADCs). In this context, we present Ark, a programming language for describing analog compute paradigms. Ark enables progressive incorporation of analog behaviors into computations, and deploys a validator and dynamical system compiler for verifying and simulating computations. We use Ark to codify the design space for three different exemplary circuit design problems, and demonstrate that Ark helps exploring design trade-offs and evaluating the impact of nonidealities to the computation.

Recommender systems are used to provide relevant suggestions on various matters. Although these systems are a classical research topic, knowledge is still limited regarding the public opinion about these systems. Public opinion is also important because the systems are known to cause various problems. To this end, this paper presents a qualitative analysis of the perceptions of ordinary citizens, civil society groups, businesses, and others on recommender systems in Europe. The dataset examined is based on the answers submitted to a consultation about the Digital Services Act (DSA) recently enacted in the European Union (EU). Therefore, not only does the paper contribute to the pressing question about regulating new technologies and online platforms, but it also reveals insights about the policy-making of the DSA. According to the qualitative results, Europeans have generally negative opinions about recommender systems and the quality of their recommendations. The systems are widely seen to violate privacy and other fundamental rights. According to many Europeans, these also cause various societal problems, including even threats to democracy. Furthermore, existing regulations in the EU are commonly seen to have failed due to a lack of proper enforcement. Numerous suggestions were made by the respondents to the consultation for improving the situation, but only a few of these ended up to the DSA.

This paper delves into the intersection of computational theory and music, examining the concept of undecidability and its significant, yet overlooked, implications within the realm of modern music composition and production. It posits that undecidability, a principle traditionally associated with theoretical computer science, extends its relevance to the music industry. The study adopts a multidimensional approach, focusing on five key areas: (1) the Turing completeness of Ableton, a widely used digital audio workstation, (2) the undecidability of satisfiability in sound creation utilizing an array of effects, (3) the undecidability of constraints on polymeters in musical compositions, (4) the undecidability of satisfiability in just intonation harmony constraints, and (5) the undecidability of "new ordering systems". In addition to providing theoretical proof for these assertions, the paper elucidates the practical relevance of these concepts for practitioners outside the field of theoretical computer science. The ultimate aim is to foster a new understanding of undecidability in music, highlighting its broader applicability and potential to influence contemporary computer-assisted (and traditional) music making.

Recently, large-scale pre-trained language-image models like CLIP have shown extraordinary capabilities for understanding spatial contents, but naively transferring such models to video recognition still suffers from unsatisfactory temporal modeling capabilities. Existing methods insert tunable structures into or in parallel with the pre-trained model, which either requires back-propagation through the whole pre-trained model and is thus resource-demanding, or is limited by the temporal reasoning capability of the pre-trained structure. In this work, we present DiST, which disentangles the learning of spatial and temporal aspects of videos. Specifically, DiST uses a dual-encoder structure, where a pre-trained foundation model acts as the spatial encoder, and a lightweight network is introduced as the temporal encoder. An integration branch is inserted between the encoders to fuse spatio-temporal information. The disentangled spatial and temporal learning in DiST is highly efficient because it avoids the back-propagation of massive pre-trained parameters. Meanwhile, we empirically show that disentangled learning with an extra network for integration benefits both spatial and temporal understanding. Extensive experiments on five benchmarks show that DiST delivers better performance than existing state-of-the-art methods by convincing gaps. When pre-training on the large-scale Kinetics-710, we achieve 89.7% on Kinetics-400 with a frozen ViT-L model, which verifies the scalability of DiST. Codes and models can be found in //github.com/alibaba-mmai-research/DiST.

Distribution-dependent stochastic dynamical systems arise widely in engineering and science. We consider a class of such systems which model the limit behaviors of interacting particles moving in a vector field with random fluctuations. We aim to examine the most likely transition path between equilibrium stable states of the vector field. In the small noise regime, the action functional does not involve the solution of the skeleton equation which describes the unperturbed deterministic flow of the vector field shifted by the interaction at zero distance. As a result, we are led to study the most likely transition path for a stochastic differential equation without distribution dependency. This enables the computation of the most likely transition path for these distribution-dependent stochastic dynamical systems by the adaptive minimum action method and we illustrate our approach in two examples.

We explore the use of neural synthesis for acoustic guitar from string-wise MIDI input. We propose four different systems and compare them with both objective metrics and subjective evaluation against natural audio and a sample-based baseline. We iteratively develop these four systems by making various considerations on the architecture and intermediate tasks, such as predicting pitch and loudness control features. We find that formulating the control feature prediction task as a classification task rather than a regression task yields better results. Furthermore, we find that our simplest proposed system, which directly predicts synthesis parameters from MIDI input performs the best out of the four proposed systems. Audio examples are available at //erl-j.github.io/neural-guitar-web-supplement.

Markov processes are widely used mathematical models for describing dynamic systems in various fields. However, accurately simulating large-scale systems at long time scales is computationally expensive due to the short time steps required for accurate integration. In this paper, we introduce an inference process that maps complex systems into a simplified representational space and models large jumps in time. To achieve this, we propose Time-lagged Information Bottleneck (T-IB), a principled objective rooted in information theory, which aims to capture relevant temporal features while discarding high-frequency information to simplify the simulation task and minimize the inference error. Our experiments demonstrate that T-IB learns information-optimal representations for accurately modeling the statistical properties and dynamics of the original process at a selected time lag, outperforming existing time-lagged dimensionality reduction methods.

A resampling scheme provides a way to switch low-weight particles for sequential Monte Carlo with higher-weight particles representing the objective distribution. The less the variance of the weight distribution is, the more concentrated the effective particles are, and the quicker and more accurate it is to approximate the hidden Markov model, especially for the nonlinear case. We propose a repetitive deterministic domain with median ergodicity for resampling and have achieved the lowest variances compared to the other resampling methods. As the size of the deterministic domain $M\ll N$ (the size of population), given a feasible size of particles, our algorithm is faster than the state of the art, which is verified by theoretical deduction and experiments of a hidden Markov model in both the linear and non-linear cases.

北京阿比特科技有限公司