亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This article compares two of the leading mobile network operators in Thailand's telecom market in terms of the service quality of Thailand's 5G networks. The following three factors, download speed, upload speed and latency, which are frequently considered to be indicators of the quality of Internet networks, were examined. The researchers employed the test results to determine an average grade of service that was reached by comparing newly collected data to data that had previously been examined utilizing the same format and application in the middle of May 2021. The typical upload speed dropped from 62.6 Mbps in 2021 to 52.0 Mbps in 2023, while the latency increased from 14.9 to 23.3 milliseconds on average. It was established that the results delivered considerably enhanced quality values despite the fact that the test region in this study only comprised BTS stations. Furthermore, this was the case despite the fact that the test area in this study only encompassed a small percentage of the total population.

相關內容

Explanation:網絡。 Publisher:Wiley。 SIT:

In this work we introduce the CitrusFarm dataset, a comprehensive multimodal sensory dataset collected by a wheeled mobile robot operating in agricultural fields. The dataset offers stereo RGB images with depth information, as well as monochrome, near-infrared and thermal images, presenting diverse spectral responses crucial for agricultural research. Furthermore, it provides a range of navigational sensor data encompassing wheel odometry, LiDAR, inertial measurement unit (IMU), and GNSS with Real-Time Kinematic (RTK) as the centimeter-level positioning ground truth. The dataset comprises seven sequences collected in three fields of citrus trees, featuring various tree species at different growth stages, distinctive planting patterns, as well as varying daylight conditions. It spans a total operation time of 1.7 hours, covers a distance of 7.5 km, and constitutes 1.3 TB of data. We anticipate that this dataset can facilitate the development of autonomous robot systems operating in agricultural tree environments, especially for localization, mapping and crop monitoring tasks. Moreover, the rich sensing modalities offered in this dataset can also support research in a range of robotics and computer vision tasks, such as place recognition, scene understanding, object detection and segmentation, and multimodal learning. The dataset, in conjunction with related tools and resources, is made publicly available at //github.com/UCR-Robotics/Citrus-Farm-Dataset.

We propose a Holistic Return on Ethics (HROE) framework for understanding the return on organizational investments in artificial intelligence (AI) ethics efforts. This framework is useful for organizations that wish to quantify the return for their investment decisions. The framework identifies the direct economic returns of such investments, the indirect paths to return through intangibles associated with organizational reputation, and real options associated with capabilities. The holistic framework ultimately provides organizations with the competency to employ and justify AI ethics investments.

We present an exploration of cultural norms surrounding online disclosure of information about one's interpersonal relationships (such as information about family members, colleagues, friends, or lovers) on Twitter. The literature identifies the cultural dimension of individualism versus collectivism as being a major determinant of offline communication differences in terms of emotion, topic, and content disclosed. We decided to study whether such differences also occur online in context of Twitter when comparing tweets posted in an individualistic (U.S.) versus a collectivist (India) society. We collected more than 2 million tweets posted in the U.S. and India over a 3 month period which contain interpersonal relationship keywords. A card-sort study was used to develop this culturally-sensitive saturated taxonomy of keywords that represent interpersonal relationships (e.g., ma, mom, mother). Then we developed a high-accuracy interpersonal disclosure detector based on dependency-parsing (F1-score: 86%) to identify when the words refer to a personal relationship of the poster (e.g., "my mom" as opposed to "a mom"). This allowed us to identify the 400K+ tweets in our data set which actually disclose information about the poster's interpersonal relationships. We used a mixed methods approach to analyze these tweets (e.g., comparing the amount of joy expressed about one's family) and found differences in emotion, topic, and content disclosed between tweets from the U.S. versus India. Our analysis also reveals how a combination of qualitative and quantitative methods are needed to uncover these differences; Using just one or the other can be misleading. This study extends the prior literature on Multi-Party Privacy and provides guidance for researchers and designers of culturally-sensitive systems.

The latest discussions on the upcoming sixth Generation (6G) of wireless communications are envisioning future networks as a unified communications, sensing, and computing platform. The recently conceived concept of the smart radio environment, enabled by Reconfigurable Intelligent Surfaces (RISs), contributes towards this vision offering programmable propagation of information-bearing signals. Typical RIS implementations include metasurfaces with almost passive unit elements capable of reflecting their incident waves in controllable ways. However, this solely reflective operation induces significant challenges for the RIS optimization from the wireless network orchestrator. For example, RISs lack information to locally tune their reflection pattern, which can only be acquired by other network entities, and then shared with the RIS controller. Furthermore, channel estimation, which is essential for coherent RIS-empowered communications, is challenging with the available RIS designs. This article reviews the emerging concept of Hybrid reflecting and sensing RISs (HRISs), which enables metasurfaces to reflect the impinging signal in a controllable manner, while simultaneously sensing a portion of it. The sensing capability of HRISs facilitates various network management functionalities, including channel parameter estimation and localization, while giving rise to potentially computationally autonomous and self-configuring metasurfaces. We discuss a hardware design for HRISs and detail a full-wave electromagnetic proof of concept. The distinctive properties of HRISs, in comparison to their solely reflective counterparts, are highlighted and a simulation study evaluating their capability for performing full and parametric channel estimation is presented. Future research challenges and opportunities arising from the HRIS concept are also included.

Modern recommender systems lie at the heart of complex ecosystems that couple the behavior of users, content providers, advertisers, and other actors. Despite this, the focus of the majority of recommender research -- and most practical recommenders of any import -- is on the local, myopic optimization of the recommendations made to individual users. This comes at a significant cost to the long-term utility that recommenders could generate for its users. We argue that explicitly modeling the incentives and behaviors of all actors in the system -- and the interactions among them induced by the recommender's policy -- is strictly necessary if one is to maximize the value the system brings to these actors and improve overall ecosystem "health". Doing so requires: optimization over long horizons using techniques such as reinforcement learning; making inevitable tradeoffs in the utility that can be generated for different actors using the methods of social choice; reducing information asymmetry, while accounting for incentives and strategic behavior, using the tools of mechanism design; better modeling of both user and item-provider behaviors by incorporating notions from behavioral economics and psychology; and exploiting recent advances in generative and foundation models to make these mechanisms interpretable and actionable. We propose a conceptual framework that encompasses these elements, and articulate a number of research challenges that emerge at the intersection of these different disciplines.

Social media platforms, including Twitter (now X), have policies in place to maintain a safe and trustworthy advertising environment. However, the extent to which these policies are adhered to and enforced remains a subject of interest and concern. We present the first large-scale audit of advertising on Twitter focusing on compliance with the platform's advertising policies, particularly those related to political and adult content. We investigate the compliance of advertisements on Twitter with the platform's stated policies and the impact of recent acquisition on the advertising activity of the platform. By analyzing 34K advertisements from ~6M tweets, collected over six months, we find evidence of widespread noncompliance with Twitter's political and adult content advertising policies suggesting a lack of effective ad content moderation. We also find that Elon Musk's acquisition of Twitter had a noticeable impact on the advertising landscape, with most existing advertisers either completely stopping their advertising activity or reducing it. Major brands decreased their advertising on Twitter, suggesting a negative immediate effect on the platform's advertising revenue. Our findings underscore the importance of external audits to monitor compliance and improve transparency in online advertising.

Graph neural networks (GNNs) have demonstrated a significant boost in prediction performance on graph data. At the same time, the predictions made by these models are often hard to interpret. In that regard, many efforts have been made to explain the prediction mechanisms of these models from perspectives such as GNNExplainer, XGNN and PGExplainer. Although such works present systematic frameworks to interpret GNNs, a holistic review for explainable GNNs is unavailable. In this survey, we present a comprehensive review of explainability techniques developed for GNNs. We focus on explainable graph neural networks and categorize them based on the use of explainable methods. We further provide the common performance metrics for GNNs explanations and point out several future research directions.

With the advent of 5G commercialization, the need for more reliable, faster, and intelligent telecommunication systems are envisaged for the next generation beyond 5G (B5G) radio access technologies. Artificial Intelligence (AI) and Machine Learning (ML) are not just immensely popular in the service layer applications but also have been proposed as essential enablers in many aspects of B5G networks, from IoT devices and edge computing to cloud-based infrastructures. However, most of the existing surveys in B5G security focus on the performance of AI/ML models and their accuracy, but they often overlook the accountability and trustworthiness of the models' decisions. Explainable AI (XAI) methods are promising techniques that would allow system developers to identify the internal workings of AI/ML black-box models. The goal of using XAI in the security domain of B5G is to allow the decision-making processes of the security of systems to be transparent and comprehensible to stakeholders making the systems accountable for automated actions. In every facet of the forthcoming B5G era, including B5G technologies such as RAN, zero-touch network management, E2E slicing, this survey emphasizes the role of XAI in them and the use cases that the general users would ultimately enjoy. Furthermore, we presented the lessons learned from recent efforts and future research directions on top of the currently conducted projects involving XAI.

Deep neural networks (DNNs) are successful in many computer vision tasks. However, the most accurate DNNs require millions of parameters and operations, making them energy, computation and memory intensive. This impedes the deployment of large DNNs in low-power devices with limited compute resources. Recent research improves DNN models by reducing the memory requirement, energy consumption, and number of operations without significantly decreasing the accuracy. This paper surveys the progress of low-power deep learning and computer vision, specifically in regards to inference, and discusses the methods for compacting and accelerating DNN models. The techniques can be divided into four major categories: (1) parameter quantization and pruning, (2) compressed convolutional filters and matrix factorization, (3) network architecture search, and (4) knowledge distillation. We analyze the accuracy, advantages, disadvantages, and potential solutions to the problems with the techniques in each category. We also discuss new evaluation metrics as a guideline for future research.

Small data challenges have emerged in many learning problems, since the success of deep neural networks often relies on the availability of a huge amount of labeled data that is expensive to collect. To address it, many efforts have been made on training complex models with small data in an unsupervised and semi-supervised fashion. In this paper, we will review the recent progresses on these two major categories of methods. A wide spectrum of small data models will be categorized in a big picture, where we will show how they interplay with each other to motivate explorations of new ideas. We will review the criteria of learning the transformation equivariant, disentangled, self-supervised and semi-supervised representations, which underpin the foundations of recent developments. Many instantiations of unsupervised and semi-supervised generative models have been developed on the basis of these criteria, greatly expanding the territory of existing autoencoders, generative adversarial nets (GANs) and other deep networks by exploring the distribution of unlabeled data for more powerful representations. While we focus on the unsupervised and semi-supervised methods, we will also provide a broader review of other emerging topics, from unsupervised and semi-supervised domain adaptation to the fundamental roles of transformation equivariance and invariance in training a wide spectrum of deep networks. It is impossible for us to write an exclusive encyclopedia to include all related works. Instead, we aim at exploring the main ideas, principles and methods in this area to reveal where we are heading on the journey towards addressing the small data challenges in this big data era.

北京阿比特科技有限公司