亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We study the use of local consistency methods as reductions between constraint satisfaction problems (CSPs), and promise version thereof, with the aim to classify these reductions in a similar way as the algebraic approach classifies gadget reductions between CSPs. This research is motivated by the requirement of more expressive reductions in the scope of promise CSPs. While gadget reductions are enough to provide all necessary hardness in the scope of (finite domain) non-promise CSP, in promise CSPs a wider class of reductions needs to be used. We provide a general framework of reductions, which we call consistency reductions, that covers most (if not all) reductions recently used for proving NP-hardness of promise CSPs. We prove some basic properties of these reductions, and provide the first steps towards understanding the power of consistency reductions by characterizing a fragment associated to arc-consistency in terms of polymorphisms of the template. In addition to showing hardness, consistency reductions can also be used to provide feasible algorithms by reducing to a fixed tractable (promise) CSP, for example, to solving systems of affine equations. In this direction, among other results, we describe the well-known Sherali-Adams hierarchy for CSP in terms of a consistency reduction to linear programming.

相關內容

We consider the split-preconditioned FGMRES method in a mixed precision framework, in which four potentially different precisions can be used for computations with the coefficient matrix, application of the left preconditioner, application of the right preconditioner, and the working precision. Our analysis is applicable to general preconditioners. We obtain bounds on the backward and forward errors in split-preconditioned FGMRES. Our analysis further provides insight into how the various precisions should be chosen; under certain assumptions, a suitable selection guarantees a backward error on the order of the working precision.

We analyse a numerical scheme for a system arising from a novel description of the standard elastic--perfectly plastic response. The elastic--perfectly plastic response is described via rate-type equations that do not make use of the standard elastic-plastic decomposition, and the model does not require the use of variational inequalities. Furthermore, the model naturally includes the evolution equation for temperature. We present a low order discretisation based on the finite element method. Under certain restrictions on the mesh we subsequently prove the existence of discrete solutions, and we discuss the stability properties of the numerical scheme. The analysis is supplemented with computational examples.

Most of the literature on causality considers the structural framework of Pearl and the potential-outcome framework of Neyman and Rubin to be formally equivalent, and therefore interchangeably uses the do-notation and the potential-outcome subscript notation to write counterfactual outcomes. In this paper, we superimpose the two causal frameworks to prove that structural counterfactual outcomes and potential outcomes do not coincide in general -- not even in law. More precisely, we express the law of the potential outcomes in terms of the latent structural causal model under the fundamental assumptions of causal inference. This enables us to precisely identify when counterfactual inference is or is not equivalent between approaches, and to clarify the meaning of each kind of counterfactuals.

This article introduces an innovative mathematical framework designed to tackle non-linear convex variational problems in reflexive Banach spaces. Our approach employs a versatile technique that can handle a broad range of variational problems, including standard ones. To carry out the process effectively, we utilize specialized sets known as radial dictionaries, where these dictionaries encompass diverse data types, such as tensors in Tucker format with bounded rank and Neural Networks with fixed architecture and bounded parameters. The core of our method lies in employing a greedy algorithm through dictionary optimization defined by a multivalued map. Significantly, our analysis shows that the convergence rate achieved by our approach is comparable to the Method of Steepest Descend implemented in a reflexive Banach space, where the convergence rate follows the order of $O(m^{-1})$.

In general, high order splitting methods suffer from an order reduction phenomena when applied to the time integration of partial differential equations with non-periodic boundary conditions. In the last decade, there were introduced several modifications to prevent the second order Strang Splitting method from such a phenomena. In this article, inspired by these recent corrector techniques, we introduce a splitting method of order three for a class of semilinear parabolic problems that avoids order reduction in the context of non-periodic boundary conditions. We give a proof for the third order convergence of the method in a simplified linear setting and confirm the result by numerical experiments. Moreover, we show numerically that the high order convergence persists for an order four variant of a splitting method, and also for a nonlinear source term.

Conditional graph entropy is known to be the minimal rate for a natural functional compression problem with side information at the receiver. In this paper we show that it can be formulated as an alternating minimization problem, which gives rise to a simple iterative algorithm for numerically computing (conditional) graph entropy. This also leads to a new formula which shows that conditional graph entropy is part of a more general framework: the solution of an optimization problem over a convex corner. In the special case of graph entropy (i.e., unconditioned version) this was known due to Csisz\'ar, K\"orner, Lov\'asz, Marton, and Simonyi. In that case the role of the convex corner was played by the so-called vertex packing polytope. In the conditional version it is a more intricate convex body but the function to minimize is the same. Furthermore, we describe a dual problem that leads to an optimality check and an error bound for the iterative algorithm.

With the increasing availability of large scale datasets, computational power and tools like automatic differentiation and expressive neural network architectures, sequential data are now often treated in a data-driven way, with a dynamical model trained from the observation data. While neural networks are often seen as uninterpretable black-box architectures, they can still benefit from physical priors on the data and from mathematical knowledge. In this paper, we use a neural network architecture which leverages the long-known Koopman operator theory to embed dynamical systems in latent spaces where their dynamics can be described linearly, enabling a number of appealing features. We introduce methods that enable to train such a model for long-term continuous reconstruction, even in difficult contexts where the data comes in irregularly-sampled time series. The potential for self-supervised learning is also demonstrated, as we show the promising use of trained dynamical models as priors for variational data assimilation techniques, with applications to e.g. time series interpolation and forecasting.

We study a subspace constrained version of the randomized Kaczmarz algorithm for solving large linear systems in which the iterates are confined to the space of solutions of a selected subsystem. We show that the subspace constraint leads to an accelerated convergence rate, especially when the system has structure such as having coherent rows or being approximately low-rank. On Gaussian-like random data, it results in a form of dimension reduction that effectively improves the aspect ratio of the system. Furthermore, this method serves as a building block for a second, quantile-based algorithm for the problem of solving linear systems with arbitrary sparse corruptions, which is able to efficiently exploit partial external knowledge about uncorrupted equations and achieve convergence in difficult settings such as in almost-square systems. Numerical experiments on synthetic and real-world data support our theoretical results and demonstrate the validity of the proposed methods for even more general data models than guaranteed by the theory.

We present a constant-factor approximation algorithm for the Nash social welfare maximization problem with subadditive valuations accessible via demand queries. More generally, we propose a template for NSW optimization by solving a configuration-type LP and using a rounding procedure for (utilitarian) social welfare as a blackbox, which could be applicable to other variants of the problem.

Besov priors are nonparametric priors that can model spatially inhomogeneous functions. They are routinely used in inverse problems and imaging, where they exhibit attractive sparsity-promoting and edge-preserving features. A recent line of work has initiated the study of their asymptotic frequentist convergence properties. In the present paper, we consider the theoretical recovery performance of the posterior distributions associated to Besov-Laplace priors in the density estimation model, under the assumption that the observations are generated by a possibly spatially inhomogeneous true density belonging to a Besov space. We improve on existing results and show that carefully tuned Besov-Laplace priors attain optimal posterior contraction rates. Furthermore, we show that hierarchical procedures involving a hyper-prior on the regularity parameter lead to adaptation to any smoothness level.

北京阿比特科技有限公司