亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The trend in industrial automation is towards networking, intelligence and autonomy. Digital Twins, which serve as virtual representations, are becoming increasingly important in this context. The Digital Twin of a modular production system contains many different models that are mostly created for specific applications and fulfil different requirements. Especially simulation models, which are created in the development phase, can be used during the operational phase for applications such as prognosis or operation-parallel simulation. Due to the high heterogeneity of the model landscape in the context of a modular production system, the plant operator is faced with the challenge of adapting the models in order to ensure an application-oriented realism in the event of changes to the asset and its environment or the addition of applications. Therefore, this paper proposes a concept for the continuous model adaption in the Digital Twin of a modular production system during the operational phase. The benefits are then demonstrated by an application scenario and an agent-based realisation.

相關內容

讓 iOS 8 和 OS X Yosemite 無縫切換的一個新特性。 > Apple products have always been designed to work together beautifully. But now they may really surprise you. With iOS 8 and OS X Yosemite, you’ll be able to do more wonderful things than ever before.

Source:

Software is a great enabler for a number of projects that otherwise would be impossible to perform. Such projects include Space Exploration, Weather Modeling, Genome Projects, and many others. It is critical that software aiding these projects does what it is expected to do. In the terminology of software engineering, software that corresponds to requirements, that is does what it is expected to do is called correct. Checking the correctness of software has been the focus of a great deal of research in the area of software engineering. Practitioners in the field in which software is applied quite often do not assign much value to checking this correctness. Yet, as software systems become larger, potentially combined with distributed subsystems written by different authors, such verification becomes even more important. Concurrent, distributed systems are prone to dangerous errors due to different speeds of execution of their components such as deadlocks, race conditions, or violation of project-specific properties. This project describes an application of a static analysis method called model checking to verification of a distributed system for the Bioinformatics process. In it, we evaluate the efficiency of the model checking approach to the verification of combined processes with an increasing number of concurrently executed steps. We show that our experimental results correspond to analytically derived expectations. We also highlight the importance of static analysis to combined processes in the Bioinformatics field.

The use of Agent-Based and Activity-Based modeling in transportation is rising due to the capability of addressing complex applications such as disruptive trends (e.g., remote working and automation) or the design and assessment of disaggregated management strategies. Still, the broad adoption of large-scale disaggregate models is not materializing due to the inherently high complexity and computational needs. Activity-based models focused on behavioral theory, for example, may involve hundreds of parameters that need to be calibrated to match the detailed socio-economical characteristics of the population for any case study. This paper tackles this issue by proposing a novel Bayesian Optimization approach incorporating a surrogate model in the form of an improved Random Forest, designed to automate the calibration process of the behavioral parameters. The proposed method is tested on a case study for the city of Tallinn, Estonia, where the model to be calibrated consists of 477 behavioral parameters, using the SimMobility MT software. Satisfactory performance is achieved in the major indicators defined for the calibration process: the error for the overall number of trips is equal to 4% and the average error in the OD matrix is 15.92 vehicles per day.

Some actions must be executed in different ways depending on the context. For example, wiping away marker requires vigorous force while wiping away almonds requires more gentle force. In this paper we provide a model where an agent learns which manner of action execution to use in which context, drawing on evidence from trial and error and verbal corrections when it makes a mistake (e.g., ``no, gently''). The learner starts out with a domain model that lacks the concepts denoted by the words in the teacher's feedback; both the words describing the context (e.g., marker) and the adverbs like ``gently''. We show that through the the semantics of coherence, our agent can perform the symbol grounding that's necessary for exploiting the teacher's feedback so as to solve its domain-level planning problem: to perform its actions in the current context in the right way.

In large-scale systems there are fundamental challenges when centralised techniques are used for task allocation. The number of interactions is limited by resource constraints such as on computation, storage, and network communication. We can increase scalability by implementing the system as a distributed task-allocation system, sharing tasks across many agents. However, this also increases the resource cost of communications and synchronisation, and is difficult to scale. In this paper we present four algorithms to solve these problems. The combination of these algorithms enable each agent to improve their task allocation strategy through reinforcement learning, while changing how much they explore the system in response to how optimal they believe their current strategy is, given their past experience. We focus on distributed agent systems where the agents' behaviours are constrained by resource usage limits, limiting agents to local rather than system-wide knowledge. We evaluate these algorithms in a simulated environment where agents are given a task composed of multiple subtasks that must be allocated to other agents with differing capabilities, to then carry out those tasks. We also simulate real-life system effects such as networking instability. Our solution is shown to solve the task allocation problem to 6.7% of the theoretical optimal within the system configurations considered. It provides 5x better performance recovery over no-knowledge retention approaches when system connectivity is impacted, and is tested against systems up to 100 agents with less than a 9% impact on the algorithms' performance.

Unsupervised domain adaptation has recently emerged as an effective paradigm for generalizing deep neural networks to new target domains. However, there is still enormous potential to be tapped to reach the fully supervised performance. In this paper, we present a novel active learning strategy to assist knowledge transfer in the target domain, dubbed active domain adaptation. We start from an observation that energy-based models exhibit free energy biases when training (source) and test (target) data come from different distributions. Inspired by this inherent mechanism, we empirically reveal that a simple yet efficient energy-based sampling strategy sheds light on selecting the most valuable target samples than existing approaches requiring particular architectures or computation of the distances. Our algorithm, Energy-based Active Domain Adaptation (EADA), queries groups of targe data that incorporate both domain characteristic and instance uncertainty into every selection round. Meanwhile, by aligning the free energy of target data compact around the source domain via a regularization term, domain gap can be implicitly diminished. Through extensive experiments, we show that EADA surpasses state-of-the-art methods on well-known challenging benchmarks with substantial improvements, making it a useful option in the open world. Code is available at //github.com/BIT-DA/EADA.

Games and simulators can be a valuable platform to execute complex multi-agent, multiplayer, imperfect information scenarios with significant parallels to military applications: multiple participants manage resources and make decisions that command assets to secure specific areas of a map or neutralize opposing forces. These characteristics have attracted the artificial intelligence (AI) community by supporting development of algorithms with complex benchmarks and the capability to rapidly iterate over new ideas. The success of artificial intelligence algorithms in real-time strategy games such as StarCraft II have also attracted the attention of the military research community aiming to explore similar techniques in military counterpart scenarios. Aiming to bridge the connection between games and military applications, this work discusses past and current efforts on how games and simulators, together with the artificial intelligence algorithms, have been adapted to simulate certain aspects of military missions and how they might impact the future battlefield. This paper also investigates how advances in virtual reality and visual augmentation systems open new possibilities in human interfaces with gaming platforms and their military parallels.

Artificial Intelligence (AI) is rapidly becoming integrated into military Command and Control (C2) systems as a strategic priority for many defence forces. The successful implementation of AI is promising to herald a significant leap in C2 agility through automation. However, realistic expectations need to be set on what AI can achieve in the foreseeable future. This paper will argue that AI could lead to a fragility trap, whereby the delegation of C2 functions to an AI could increase the fragility of C2, resulting in catastrophic strategic failures. This calls for a new framework for AI in C2 to avoid this trap. We will argue that antifragility along with agility should form the core design principles for AI-enabled C2 systems. This duality is termed Agile, Antifragile, AI-Enabled Command and Control (A3IC2). An A3IC2 system continuously improves its capacity to perform in the face of shocks and surprises through overcompensation from feedback during the C2 decision-making cycle. An A3IC2 system will not only be able to survive within a complex operational environment, it will also thrive, benefiting from the inevitable shocks and volatility of war.

Dialogue systems are a popular Natural Language Processing (NLP) task as it is promising in real-life applications. It is also a complicated task since many NLP tasks deserving study are involved. As a result, a multitude of novel works on this task are carried out, and most of them are deep learning-based due to the outstanding performance. In this survey, we mainly focus on the deep learning-based dialogue systems. We comprehensively review state-of-the-art research outcomes in dialogue systems and analyze them from two angles: model type and system type. Specifically, from the angle of model type, we discuss the principles, characteristics, and applications of different models that are widely used in dialogue systems. This will help researchers acquaint these models and see how they are applied in state-of-the-art frameworks, which is rather helpful when designing a new dialogue system. From the angle of system type, we discuss task-oriented and open-domain dialogue systems as two streams of research, providing insight into the hot topics related. Furthermore, we comprehensively review the evaluation methods and datasets for dialogue systems to pave the way for future research. Finally, some possible research trends are identified based on the recent research outcomes. To the best of our knowledge, this survey is the most comprehensive and up-to-date one at present in the area of dialogue systems and dialogue-related tasks, extensively covering the popular frameworks, topics, and datasets.

Knowledge is a formal way of understanding the world, providing a human-level cognition and intelligence for the next-generation artificial intelligence (AI). One of the representations of knowledge is the structural relations between entities. An effective way to automatically acquire this important knowledge, called Relation Extraction (RE), a sub-task of information extraction, plays a vital role in Natural Language Processing (NLP). Its purpose is to identify semantic relations between entities from natural language text. To date, there are several studies for RE in previous works, which have documented these techniques based on Deep Neural Networks (DNNs) become a prevailing technique in this research. Especially, the supervised and distant supervision methods based on DNNs are the most popular and reliable solutions for RE. This article 1)introduces some general concepts, and further 2)gives a comprehensive overview of DNNs in RE from two points of view: supervised RE, which attempts to improve the standard RE systems, and distant supervision RE, which adopts DNNs to design the sentence encoder and the de-noise method. We further 3)cover some novel methods and describe some recent trends and discuss possible future research directions for this task.

There is a resurgent interest in developing intelligent open-domain dialog systems due to the availability of large amounts of conversational data and the recent progress on neural approaches to conversational AI. Unlike traditional task-oriented bots, an open-domain dialog system aims to establish long-term connections with users by satisfying the human need for communication, affection, and social belonging. This paper reviews the recent works on neural approaches that are devoted to addressing three challenges in developing such systems: semantics, consistency, and interactiveness. Semantics requires a dialog system to not only understand the content of the dialog but also identify user's social needs during the conversation. Consistency requires the system to demonstrate a consistent personality to win users trust and gain their long-term confidence. Interactiveness refers to the system's ability to generate interpersonal responses to achieve particular social goals such as entertainment, conforming, and task completion. The works we select to present here is based on our unique views and are by no means complete. Nevertheless, we hope that the discussion will inspire new research in developing more intelligent dialog systems.

北京阿比特科技有限公司