We introduce the paradigm of validated decentralized learning for undirected networks with heterogeneous data and possible adversarial infiltration. We require (a) convergence to a global empirical loss minimizer when adversaries are absent, and (b) either detection of adversarial presence of convergence to an admissible consensus irrespective of the adversarial configuration. To this end, we propose the VALID protocol which, to the best of our knowledge, is the first to achieve a validated learning guarantee. Moreover, VALID offers an O(1/T) convergence rate (under pertinent regularity assumptions), and computational and communication complexities comparable to non-adversarial distributed stochastic gradient descent. Remarkably, VALID retains optimal performance metrics in adversary-free environments, sidestepping the robustness penalties observed in prior byzantine-robust methods. A distinctive aspect of our study is a heterogeneity metric based on the norms of individual agents' gradients computed at the global empirical loss minimizer. This not only provides a natural statistic for detecting significant byzantine disruptions but also allows us to prove the optimality of VALID in wide generality. Lastly, our numerical results reveal that, in the absence of adversaries, VALID converges faster than state-of-the-art byzantine robust algorithms, while when adversaries are present, VALID terminates with each honest either converging to an admissible consensus of declaring adversarial presence in the network.
We propose a fresh take on understanding the mechanisms of neural networks by analyzing the rich directional structure of optimization trajectories, represented by their pointwise parameters. Towards this end, we introduce some natural notions of the complexity of optimization trajectories, both qualitative and quantitative, which hallmark the directional nature of optimization in neural networks: when is there redundancy, and when exploration. We use them to reveal the inherent nuance and interplay involved between various optimization choices, such as momentum and weight decay. Further, the trajectory perspective helps us see the effect of scale on regularizing the directional nature of trajectories, and as a by-product, we also observe an intriguing heterogeneity of Q,K,V dynamics in the middle attention layers in LLMs and which is homogenized by scale. Importantly, we put the significant directional redundancy observed to the test by demonstrating that training only scalar batchnorm parameters some while into training matches the performance of training the entire network, which thus exhibits the potential of hybrid optimization schemes that are geared towards efficiency.
Recent advancements in machine learning have significantly improved the identification of disease-associated genes from gene expression datasets. However, these processes often require extensive expertise and manual effort, limiting their scalability. Large Language Model (LLM)-based agents have shown promise in automating these tasks due to their increasing problem-solving abilities. To support the evaluation and development of such methods, we introduce GenoTEX, a benchmark dataset for the automatic exploration of gene expression data, involving the tasks of dataset selection, preprocessing, and statistical analysis. GenoTEX provides annotated code and results for solving a wide range of gene identification problems, in a full analysis pipeline that follows the standard of computational genomics. These annotations are curated by human bioinformaticians who carefully analyze the datasets to ensure accuracy and reliability. To provide baselines for these tasks, we present GenoAgents, a team of LLM-based agents designed with context-aware planning, iterative correction, and domain expert consultation to collaboratively explore gene datasets. Our experiments with GenoAgents demonstrate the potential of LLM-based approaches in genomics data analysis, while error analysis highlights the challenges and areas for future improvement. We propose GenoTEX as a promising resource for benchmarking and enhancing AI-driven methods for genomics data analysis. We make our benchmark publicly available at \url{//github.com/Liu-Hy/GenoTex}.
We present an approach for analyzing grouping information contained within a neural network's activations, permitting extraction of spatial layout and semantic segmentation from the behavior of large pre-trained vision models. Unlike prior work, our method conducts a holistic analysis of a network's activation state, leveraging features from all layers and obviating the need to guess which part of the model contains relevant information. Motivated by classic spectral clustering, we formulate this analysis in terms of an optimization objective involving a set of affinity matrices, each formed by comparing features within a different layer. Solving this optimization problem using gradient descent allows our technique to scale from single images to dataset-level analysis, including, in the latter, both intra- and inter-image relationships. Analyzing a pre-trained generative transformer provides insight into the computational strategy learned by such models. Equating affinity with key-query similarity across attention layers yields eigenvectors encoding scene spatial layout, whereas defining affinity by value vector similarity yields eigenvectors encoding object identity. This result suggests that key and query vectors coordinate attentional information flow according to spatial proximity (a `where' pathway), while value vectors refine a semantic category representation (a `what' pathway).
This work introduces EUvsDisinfo, a multilingual dataset of trustworthy and disinformation articles related to pro-Kremlin themes. It is sourced directly from the debunk articles written by experts leading the EUvsDisinfo project. Our dataset is the largest to-date resource in terms of the overall number of articles and distinct languages. It also provides the largest topical and temporal coverage. Using this dataset, we investigate the dissemination of pro-Kremlin disinformation across different languages, uncovering language-specific patterns targeting specific disinformation topics. We further analyse the evolution of topic distribution over an eight-year period, noting a significant surge in disinformation content before the full-scale invasion of Ukraine in 2022. Lastly, we demonstrate the dataset's applicability in training models to effectively distinguish between disinformation and trustworthy content in multilingual settings.
In the field of crowd counting research, many recent deep learning based methods have demonstrated robust capabilities for accurately estimating crowd sizes. However, the enhancement in their performance often arises from an increase in the complexity of the model structure. This paper discusses how to construct high-performance crowd counting models using only simple structures. We proposes the Fuss-Free Network (FFNet) that is characterized by its simple and efficieny structure, consisting of only a backbone network and a multi-scale feature fusion structure. The multi-scale feature fusion structure is a simple structure consisting of three branches, each only equipped with a focus transition module, and combines the features from these branches through the concatenation operation. Our proposed crowd counting model is trained and evaluated on four widely used public datasets, and it achieves accuracy that is comparable to that of existing complex models. Furthermore, we conduct a comprehensive evaluation by replacing the existing backbones of various models such as FFNet and CCTrans with different networks, including MobileNet-v3, ConvNeXt-Tiny, and Swin-Transformer-Small. The experimental results further indicate that excellent crowd counting performance can be achieved with the simplied structure proposed by us.
Gait recognition, a growing field in biological recognition technology, utilizes distinct walking patterns for accurate individual identification. However, existing methods lack the incorporation of temporal information. To reach the full potential of gait recognition, we advocate for the consideration of temporal features at varying granularities and spans. This paper introduces a novel framework, GaitGS, which aggregates temporal features simultaneously in both granularity and span dimensions. Specifically, the Multi-Granularity Feature Extractor (MGFE) is designed to capture micro-motion and macro-motion information at fine and coarse levels respectively, while the Multi-Span Feature Extractor (MSFE) generates local and global temporal representations. Through extensive experiments on two datasets, our method demonstrates state-of-the-art performance, achieving Rank-1 accuracy of 98.2%, 96.5%, and 89.7% on CASIA-B under different conditions, and 97.6% on OU-MVLP. The source code will be available at //github.com/Haijun-Xiong/GaitGS.
The landscape of deep learning has vastly expanded the frontiers of source code analysis, particularly through the utilization of structural representations such as Abstract Syntax Trees (ASTs). While these methodologies have demonstrated effectiveness in classification tasks, their efficacy in regression applications, such as execution time prediction from source code, remains underexplored. This paper endeavours to decode the behaviour of tree-based neural network models in the context of such regression challenges. We extend the application of established models--tree-based Convolutional Neural Networks (CNNs), Code2Vec, and Transformer-based methods--to predict the execution time of source code by parsing it to an AST. Our comparative analysis reveals that while these models are benchmarks in code representation, they exhibit limitations when tasked with regression. To address these deficiencies, we propose a novel dual-transformer approach that operates on both source code tokens and AST representations, employing cross-attention mechanisms to enhance interpretability between the two domains. Furthermore, we explore the adaptation of Graph Neural Networks (GNNs) to this tree-based problem, theorizing the inherent compatibility due to the graphical nature of ASTs. Empirical evaluations on real-world datasets showcase that our dual-transformer model outperforms all other tree-based neural networks and the GNN-based models. Moreover, our proposed dual transformer demonstrates remarkable adaptability and robust performance across diverse datasets.
The incredible development of federated learning (FL) has benefited various tasks in the domains of computer vision and natural language processing, and the existing frameworks such as TFF and FATE has made the deployment easy in real-world applications. However, federated graph learning (FGL), even though graph data are prevalent, has not been well supported due to its unique characteristics and requirements. The lack of FGL-related framework increases the efforts for accomplishing reproducible research and deploying in real-world applications. Motivated by such strong demand, in this paper, we first discuss the challenges in creating an easy-to-use FGL package and accordingly present our implemented package FederatedScope-GNN (FS-G), which provides (1) a unified view for modularizing and expressing FGL algorithms; (2) comprehensive DataZoo and ModelZoo for out-of-the-box FGL capability; (3) an efficient model auto-tuning component; and (4) off-the-shelf privacy attack and defense abilities. We validate the effectiveness of FS-G by conducting extensive experiments, which simultaneously gains many valuable insights about FGL for the community. Moreover, we employ FS-G to serve the FGL application in real-world E-commerce scenarios, where the attained improvements indicate great potential business benefits. We publicly release FS-G, as submodules of FederatedScope, at //github.com/alibaba/FederatedScope to promote FGL's research and enable broad applications that would otherwise be infeasible due to the lack of a dedicated package.
The existence of representative datasets is a prerequisite of many successful artificial intelligence and machine learning models. However, the subsequent application of these models often involves scenarios that are inadequately represented in the data used for training. The reasons for this are manifold and range from time and cost constraints to ethical considerations. As a consequence, the reliable use of these models, especially in safety-critical applications, is a huge challenge. Leveraging additional, already existing sources of knowledge is key to overcome the limitations of purely data-driven approaches, and eventually to increase the generalization capability of these models. Furthermore, predictions that conform with knowledge are crucial for making trustworthy and safe decisions even in underrepresented scenarios. This work provides an overview of existing techniques and methods in the literature that combine data-based models with existing knowledge. The identified approaches are structured according to the categories integration, extraction and conformity. Special attention is given to applications in the field of autonomous driving.
We introduce a multi-task setup of identifying and classifying entities, relations, and coreference clusters in scientific articles. We create SciERC, a dataset that includes annotations for all three tasks and develop a unified framework called Scientific Information Extractor (SciIE) for with shared span representations. The multi-task setup reduces cascading errors between tasks and leverages cross-sentence relations through coreference links. Experiments show that our multi-task model outperforms previous models in scientific information extraction without using any domain-specific features. We further show that the framework supports construction of a scientific knowledge graph, which we use to analyze information in scientific literature.