Out of the participants in a randomized experiment with anticipated heterogeneous treatment effects, is it possible to identify which subjects have a positive treatment effect? While subgroup analysis has received attention, claims about individual participants are much more challenging. We frame the problem in terms of multiple hypothesis testing: each individual has a null hypothesis (stating that the potential outcomes are equal, for example) and we aim to identify those for whom the null is false (the treatment potential outcome stochastically dominates the control one, for example). We develop a novel algorithm that identifies such a subset, with nonasymptotic control of the false discovery rate (FDR). Our algorithm allows for interaction -- a human data scientist (or a computer program) may adaptively guide the algorithm in a data-dependent manner to gain power. We show how to extend the methods to observational settings and achieve a type of doubly-robust FDR control. We also propose several extensions: (a) relaxing the null to nonpositive effects, (b) moving from unpaired to paired samples, and (c) subgroup identification. We demonstrate via numerical experiments and theoretical analysis that the proposed method has valid FDR control in finite samples and reasonably high identification power.
The optimization of open-loop shallow geothermal systems, which includes both design and operational aspects, is an important research area aimed at improving their efficiency and sustainability and the effective management of groundwater as a shallow geothermal resource. This paper investigates various approaches to address optimization problems arising from these research and implementation questions about GWHP systems. The identified optimization approaches are thoroughly analyzed based on criteria such as computational cost and applicability. Moreover, a novel classification scheme is introduced that categorizes the approaches according to the types of groundwater simulation model and the optimization algorithm used. Simulation models are divided into two types: numerical and simplified (analytical or data-driven) models, while optimization algorithms are divided into gradient-based and derivative-free algorithms. Finally, a comprehensive review of existing approaches in the literature is provided, highlighting their strengths and limitations and offering recommendations for both the use of existing approaches and the development of new, improved ones in this field.
Complete observation of event histories is often impossible due to sampling effects such as right-censoring and left-truncation, but also due to reporting delays and incomplete event adjudication. This is for example the case during interim stages of clinical trials and for health insurance claims. In this paper, we develop a parametric method that takes the aforementioned effects into account, treating the latter two as partially exogenous. The method, which takes the form of a two-step M-estimation procedure, is applicable to multistate models in general, including competing risks and recurrent event models. The effect of reporting delays is derived via thinning, extending existing results for Poisson models. To address incomplete event adjudication, we propose an imputed likelihood approach which, compared to existing methods, has the advantage of allowing for dependencies between the event history and adjudication processes as well as allowing for unreported events and multiple event types. We establish consistency and asymptotic normality under standard identifiability, integrability, and smoothness conditions, and we demonstrate the validity of the percentile bootstrap. Finally, a simulation study shows favorable finite sample performance of our method compared to other alternatives, while an application to disability insurance data illustrates its practical potential.
Permutation tests enable testing statistical hypotheses in situations when the distribution of the test statistic is complicated or not available. In some situations, the test statistic under investigation is multivariate, with the multiple testing problem being an important example. The corresponding multivariate permutation tests are then typically based on a suitableone-dimensional transformation of the vector of partial permutation p-values via so called combining functions. This paper proposes a new approach that utilizes the optimal measure transportation concept. The final single p-value is computed from the empirical center-outward distribution function of the permuted multivariate test statistics. This method avoids computation of the partial p-values and it is easy to be implemented. In addition, it allows to compute and interpret contributions of the components of the multivariate test statistic to the non-conformity score and to the rejection of the null hypothesis. Apart from this method, the measure transportation is applied also to the vector of partial p-values as an alternative to the classical combining functions. Both techniques are compared with the standard approaches using various practical examples in a Monte Carlo study. An application on a functional data set is provided as well.
Donoho and Kipnis (2022) showed that the the higher criticism (HC) test statistic has a non-Gaussian phase transition but remarked that it is probably not optimal, in the detection of sparse differences between two large frequency tables when the counts are low. The setting can be considered to be heterogeneous, with cells containing larger total counts more able to detect smaller differences. We provide a general study here of sparse detection arising from such heterogeneous settings, and showed that optimality of the HC test statistic requires thresholding, for example in the case of frequency table comparison, to restrict to p-values of cells with total counts exceeding a threshold. The use of thresholding also leads to optimality of the HC test statistic when it is applied on the sparse Poisson means model of Arias-Castro and Wang (2015). The phase transitions we consider here are non-Gaussian, and involve an interplay between the rate functions of the response and sample size distributions. We also showed, both theoretically and in a numerical study, that applying thresholding to the Bonferroni test statistic results in better sparse mixture detection in heterogeneous settings.
Batch effects are pervasive in biomedical studies. One approach to address the batch effects is repeatedly measuring a subset of samples in each batch. These remeasured samples are used to estimate and correct the batch effects. However, rigorous statistical methods for batch effect correction with remeasured samples are severely under-developed. In this study, we developed a framework for batch effect correction using remeasured samples in highly confounded case-control studies. We provided theoretical analyses of the proposed procedure, evaluated its power characteristics, and provided a power calculation tool to aid in the study design. We found that the number of samples that need to be remeasured depends strongly on the between-batch correlation. When the correlation is high, remeasuring a small subset of samples is possible to rescue most of the power.
In biomedical applications it is often necessary to estimate a physiological response to a treatment consisting of multiple components, and learn the separate effects of the components in addition to the joint effect. Here, we extend existing probabilistic nonparametric approaches to explicitly address this problem. We also develop a new convolution-based model for composite treatment-response curves that is more biologically interpretable. We validate our models by estimating the impact of carbohydrate and fat in meals on blood glucose. By differentiating treatment components, incorporating their dosages, and sharing statistical information across patients via a hierarchical multi-output Gaussian process, our method improves prediction accuracy over existing approaches, and allows us to interpret the different effects of carbohydrates and fat on the overall glucose response.
The flexoelectric effect, coupling polarization and strain gradient as well as strain and electric field gradients, is universal to dielectrics, but, as compared to piezoelectricity, it is more difficult to harness as it requires field gradients and it is a small-scale effect. These drawbacks can be overcome by suitably designing metamaterials made of a non-piezoelectric base material but exhibiting apparent piezoelectricity. We develop a theoretical and computational framework to perform topology optimization of the representative volume element of such metamaterials by accurately modeling the governing equations of flexoelectricity using a Cartesian B-spline method, describing geometry with a level set, and resorting to genetic algorithms for optimization. We consider a multi-objective optimization problem where area fraction competes with four fundamental piezoelectric functionalities (stress/strain sensor/ actuator). We computationally obtain Pareto fronts, and discuss the different geometries depending on the apparent piezoelectric coefficient being optimized. In general, we find competitive estimations of apparent piezoelectricity as compared to reference materials such as quartz and PZT ceramics. This opens the possibility to design devices for sensing, actuation and energy harvesting from a much wider, cheaper and effective class of materials.
This paper investigates the multiple testing problem for high-dimensional sparse binary sequences, motivated by the crowdsourcing problem in machine learning. We study the empirical Bayes approach for multiple testing on the high-dimensional Bernoulli model with a conjugate spike and uniform slab prior. We first show that the hard thresholding rule deduced from the posterior distribution is suboptimal. Consequently, the $\ell$-value procedure constructed using this posterior tends to be overly conservative in estimating the false discovery rate (FDR). We then propose two new procedures based on $\adj\ell$-values and $q$-values to correct this issue. Sharp frequentist theoretical results are obtained, demonstrating that both procedures can effectively control the FDR under sparsity. Numerical experiments are conducted to validate our theory in finite samples. To our best knowledge, this work provides the first uniform FDR control result in multiple testing for high-dimensional sparse binary data.
In prediction settings where data are collected over time, it is often of interest to understand both the importance of variables for predicting the response at each time point and the importance summarized over the time series. Building on recent advances in estimation and inference for variable importance measures, we define summaries of variable importance trajectories. These measures can be estimated and the same approaches for inference can be applied regardless of the choice of the algorithm(s) used to estimate the prediction function. We propose a nonparametric efficient estimation and inference procedure as well as a null hypothesis testing procedure that are valid even when complex machine learning tools are used for prediction. Through simulations, we demonstrate that our proposed procedures have good operating characteristics, and we illustrate their use by investigating the longitudinal importance of risk factors for suicide attempt.
Individualized treatment rules (ITRs) for treatment recommendation is an important topic for precision medicine as not all beneficial treatments work well for all individuals. Interpretability is a desirable property of ITRs, as it helps practitioners make sense of treatment decisions, yet there is a need for ITRs to be flexible to effectively model complex biomedical data for treatment decision making. Many ITR approaches either focus on linear ITRs, which may perform poorly when true optimal ITRs are nonlinear, or black-box nonlinear ITRs, which may be hard to interpret and can be overly complex. This dilemma indicates a tension between interpretability and accuracy of treatment decisions. Here we propose an additive model-based nonlinear ITR learning method that balances interpretability and flexibility of the ITR. Our approach aims to strike this balance by allowing both linear and nonlinear terms of the covariates in the final ITR. Our approach is parsimonious in that the nonlinear term is included in the final ITR only when it substantially improves the ITR performance. To prevent overfitting, we combine cross-fitting and a specialized information criterion for model selection. Through extensive simulations, we show that our methods are data-adaptive to the degree of nonlinearity and can favorably balance ITR interpretability and flexibility. We further demonstrate the robust performance of our methods with an application to a cancer drug sensitive study.