亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

For safe operation, a robot must be able to avoid collisions in uncertain environments. Existing approaches for motion planning under uncertainties often assume parametric obstacle representations and Gaussian uncertainty, which can be inaccurate. While visual perception can deliver a more accurate representation of the environment, its use for safe motion planning is limited by the inherent miscalibration of neural networks and the challenge of obtaining adequate datasets. To address these limitations, we propose to employ ensembles of deep semantic segmentation networks trained with massively augmented datasets to ensure reliable probabilistic occupancy information. To avoid conservatism during motion planning, we directly employ the probabilistic perception in a scenario-based path planning approach. A velocity scheduling scheme is applied to the path to ensure a safe motion despite tracking inaccuracies. We demonstrate the effectiveness of the massive data augmentation in combination with deep ensembles and the proposed scenario-based planning approach in comparisons to state-of-the-art methods and validate our framework in an experiment with a human hand as an obstacle.

相關內容

Networking:IFIP International Conferences on Networking。 Explanation:國際網絡會議。 Publisher:IFIP。 SIT:

Surgical tool segmentation and action recognition are fundamental building blocks in many computer-assisted intervention applications, ranging from surgical skills assessment to decision support systems. Nowadays, learning-based action recognition and segmentation approaches outperform classical methods, relying, however, on large, annotated datasets. Furthermore, action recognition and tool segmentation algorithms are often trained and make predictions in isolation from each other, without exploiting potential cross-task relationships. With the EndoVis 2022 SAR-RARP50 challenge, we release the first multimodal, publicly available, in-vivo, dataset for surgical action recognition and semantic instrumentation segmentation, containing 50 suturing video segments of Robotic Assisted Radical Prostatectomy (RARP). The aim of the challenge is twofold. First, to enable researchers to leverage the scale of the provided dataset and develop robust and highly accurate single-task action recognition and tool segmentation approaches in the surgical domain. Second, to further explore the potential of multitask-based learning approaches and determine their comparative advantage against their single-task counterparts. A total of 12 teams participated in the challenge, contributing 7 action recognition methods, 9 instrument segmentation techniques, and 4 multitask approaches that integrated both action recognition and instrument segmentation. The complete SAR-RARP50 dataset is available at: //rdr.ucl.ac.uk/projects/SARRARP50_Segmentation_of_surgical_instrumentation_and_Action_Recognition_on_Robot-Assisted_Radical_Prostatectomy_Challenge/191091

Language is compositional; an instruction can express multiple relation constraints to hold among objects in a scene that a robot is tasked to rearrange. Our focus in this work is an instructable scene-rearranging framework that generalizes to longer instructions and to spatial concept compositions never seen at training time. We propose to represent language-instructed spatial concepts with energy functions over relative object arrangements. A language parser maps instructions to corresponding energy functions and an open-vocabulary visual-language model grounds their arguments to relevant objects in the scene. We generate goal scene configurations by gradient descent on the sum of energy functions, one per language predicate in the instruction. Local vision-based policies then re-locate objects to the inferred goal locations. We test our model on established instruction-guided manipulation benchmarks, as well as benchmarks of compositional instructions we introduce. We show our model can execute highly compositional instructions zero-shot in simulation and in the real world. It outperforms language-to-action reactive policies and Large Language Model planners by a large margin, especially for long instructions that involve compositions of multiple spatial concepts. Simulation and real-world robot execution videos, as well as our code and datasets are publicly available on our website: //ebmplanner.github.io.

Soft growing robots, are a type of robots that are designed to move and adapt to their environment in a similar way to how plants grow and move with potential applications where they could be used to navigate through tight spaces, dangerous terrain, and hard-to-reach areas. This research explores the application of deep reinforcement Q-learning algorithm for facilitating the navigation of the soft growing robots in cluttered environments. The proposed algorithm utilizes the flexibility of the soft robot to adapt and incorporate the interaction between the robot and the environment into the decision-making process. Results from simulations show that the proposed algorithm improves the soft robot's ability to navigate effectively and efficiently in confined spaces. This study presents a promising approach to addressing the challenges faced by growing robots in particular and soft robots general in planning obstacle-aware paths in real-world scenarios.

Mobile app repositories have been largely used in scientific research as large-scale, highly adaptive crowdsourced information systems. These software platforms can potentially nourish multiple software and requirements engineering tasks based on user reviews and other natural language documents, including feedback analysis, recommender systems and topic modelling. Consequently, researchers often endeavour to overcome domain-specific challenges, including integration of heterogeneous data sources, large-scale data collection and adaptation of a publicly available data set for a given research scenario. In this paper, we present MApp-KG, a combination of software resources and data artefacts in the field of mobile app repositories to support extended knowledge generation tasks. Our contribution aims to provide a framework for automatically constructing a knowledge graph modelling a domain-specific catalogue of mobile apps. Complementarily, we distribute MApp-KG in a public triplestore and as a static data snapshot, which may be promptly employed for future research and reproduction of our findings.

Link prediction can help rectify inaccuracies in community detection stemming from unaccounted-for or overlooked links within networks. Many existing works use a baseline approach, which incurs unnecessary computational costs due to its high time complexity. Further, many studies focus on smaller graphs, which can lead to misleading conclusions. The report introduces two parallel approaches, called IHub and LHub, which predict links using neighborhood-based similarity measures on large graphs. LHub is a heuristic approach, which additionally disregards large hubs - based on the idea that low-degree nodes contribute significant similarity among neighbors. On a server equipped with dual 16-core Intel Xeon Gold 6226R processors, LHub is on average 563x faster than IHub, especially on web graphs and social networks, while having similar prediction accuracy. Notably, LHub achieves a link prediction rate of 38.1M edges/s and improves performance at a rate of 1.6x for every doubling of threads.

Swarm behaviour engineering is an area of research that seeks to investigate methods and techniques for coordinating computation and action within groups of simple agents to achieve complex global goals like pattern formation, collective movement, clustering, and distributed sensing. Despite recent progress in the analysis and engineering of swarms (of drones, robots, vehicles), there is still a need for general design and implementation methods and tools that can be used to define complex swarm behaviour in a principled way. To contribute to this quest, this article proposes a new field-based coordination approach, called MacroSwarm, to design and program swarm behaviour in terms of reusable and fully composable functional blocks embedding collective computation and coordination. Based on the macroprogramming paradigm of aggregate computing, MacroSwarm builds on the idea of expressing each swarm behaviour block as a pure function mapping sensing fields into actuation goal fields, e.g. including movement vectors. In order to demonstrate the expressiveness, compositionality, and practicality of MacroSwarm as a framework for collective intelligence, we perform a variety of simulations covering common patterns of flocking, morphogenesis, and collective decision-making.

Transformer-based models excel in speech recognition. Existing efforts to optimize Transformer inference, typically for long-context applications, center on simplifying attention score calculations. However, streaming speech recognition models usually process a limited number of tokens each time, making attention score calculation less of a bottleneck. Instead, the bottleneck lies in the linear projection layers of multi-head attention and feedforward networks, constituting a substantial portion of the model size and contributing significantly to computation, memory, and power usage. To address this bottleneck, we propose folding attention, a technique targeting these linear layers, significantly reducing model size and improving memory and power efficiency. Experiments on on-device Transformer-based streaming speech recognition models show that folding attention reduces model size (and corresponding memory consumption) by up to 24% and power consumption by up to 23%, all without compromising model accuracy or computation overhead.

Link prediction on knowledge graphs (KGs) is a key research topic. Previous work mainly focused on binary relations, paying less attention to higher-arity relations although they are ubiquitous in real-world KGs. This paper considers link prediction upon n-ary relational facts and proposes a graph-based approach to this task. The key to our approach is to represent the n-ary structure of a fact as a small heterogeneous graph, and model this graph with edge-biased fully-connected attention. The fully-connected attention captures universal inter-vertex interactions, while with edge-aware attentive biases to particularly encode the graph structure and its heterogeneity. In this fashion, our approach fully models global and local dependencies in each n-ary fact, and hence can more effectively capture associations therein. Extensive evaluation verifies the effectiveness and superiority of our approach. It performs substantially and consistently better than current state-of-the-art across a variety of n-ary relational benchmarks. Our code is publicly available.

Defensive deception is a promising approach for cyberdefense. Although defensive deception is increasingly popular in the research community, there has not been a systematic investigation of its key components, the underlying principles, and its tradeoffs in various problem settings. This survey paper focuses on defensive deception research centered on game theory and machine learning, since these are prominent families of artificial intelligence approaches that are widely employed in defensive deception. This paper brings forth insights, lessons, and limitations from prior work. It closes with an outline of some research directions to tackle major gaps in current defensive deception research.

Most existing knowledge graphs suffer from incompleteness, which can be alleviated by inferring missing links based on known facts. One popular way to accomplish this is to generate low-dimensional embeddings of entities and relations, and use these to make inferences. ConvE, a recently proposed approach, applies convolutional filters on 2D reshapings of entity and relation embeddings in order to capture rich interactions between their components. However, the number of interactions that ConvE can capture is limited. In this paper, we analyze how increasing the number of these interactions affects link prediction performance, and utilize our observations to propose InteractE. InteractE is based on three key ideas -- feature permutation, a novel feature reshaping, and circular convolution. Through extensive experiments, we find that InteractE outperforms state-of-the-art convolutional link prediction baselines on FB15k-237. Further, InteractE achieves an MRR score that is 9%, 7.5%, and 23% better than ConvE on the FB15k-237, WN18RR and YAGO3-10 datasets respectively. The results validate our central hypothesis -- that increasing feature interaction is beneficial to link prediction performance. We make the source code of InteractE available to encourage reproducible research.

北京阿比特科技有限公司