Offline model-based optimization aims to find a design that maximizes a property of interest using only an offline dataset, with applications in robot, protein, and molecule design, among others. A prevalent approach is gradient ascent, where a proxy model is trained on the offline dataset and then used to optimize the design. This method suffers from an out-of-distribution issue, where the proxy is not accurate for unseen designs. To mitigate this issue, we explore using a pseudo-labeler to generate valuable data for fine-tuning the proxy. Specifically, we propose \textit{\textbf{I}mportance-aware \textbf{C}o-\textbf{T}eaching for Offline Model-based Optimization}~(\textbf{ICT}). This method maintains three symmetric proxies with their mean ensemble as the final proxy, and comprises two steps. The first step is \textit{pseudo-label-driven co-teaching}. In this step, one proxy is iteratively selected as the pseudo-labeler for designs near the current optimization point, generating pseudo-labeled data. Subsequently, a co-teaching process identifies small-loss samples as valuable data and exchanges them between the other two proxies for fine-tuning, promoting knowledge transfer. This procedure is repeated three times, with a different proxy chosen as the pseudo-labeler each time, ultimately enhancing the ensemble performance. To further improve accuracy of pseudo-labels, we perform a secondary step of \textit{meta-learning-based sample reweighting}, which assigns importance weights to samples in the pseudo-labeled dataset and updates them via meta-learning. ICT achieves state-of-the-art results across multiple design-bench tasks, achieving the best mean rank of $3.1$ and median rank of $2$, among $15$ methods. Our source code can be found here.
We propose a data-driven approach to explicitly learn the progressive encoding of a continuous source, which is successively decoded with increasing levels of quality and with the aid of correlated side information. This setup refers to the successive refinement of the Wyner-Ziv coding problem. Assuming ideal Slepian-Wolf coding, our approach employs recurrent neural networks (RNNs) to learn layered encoders and decoders for the quadratic Gaussian case. The models are trained by minimizing a variational bound on the rate-distortion function of the successively refined Wyner-Ziv coding problem. We demonstrate that RNNs can explicitly retrieve layered binning solutions akin to scalable nested quantization. Moreover, the rate-distortion performance of the scheme is on par with the corresponding monolithic Wyner-Ziv coding approach and is close to the rate-distortion bound.
Self-training has proven to be an effective approach for cross-domain tasks, and in this study, we explore its application to cross-domain constituency parsing. Traditional self-training methods rely on limited and potentially low-quality raw corpora. To overcome this limitation, we propose enhancing self-training with the large language model (LLM) to generate domain-specific raw corpora iteratively. For the constituency parsing, we introduce grammar rules that guide the LLM in generating raw corpora and establish criteria for selecting pseudo instances. Our experimental results demonstrate that self-training for constituency parsing, equipped with an LLM, outperforms traditional methods regardless of the LLM's performance. Moreover, the combination of grammar rules and confidence criteria for pseudo-data selection yields the highest performance in the cross-domain constituency parsing.
Several physics and engineering applications involve the solution of a minimisation problem to compute an approximation of the input signal. Modern computing hardware and software apply high-performance computing to solve and considerably reduce the execution time. We compare and analyse different minimisation methods in terms of functional computation, convergence, execution time, and scalability properties, for the solution of two minimisation problems (i.e., approximation and denoising) with different constraints that involve computationally expensive operations. These problems are attractive due to their numerical and analytical properties, and our general analysis can be extended to most signal-processing problems. We perform our tests on the Cineca Marconi100 cluster, at the 26th position in the top500 list. Our experimental results show that PRAXIS is the best optimiser in terms of minima computation: the efficiency of the approximation is 38% with 256 processes, while the denoising has 46% with 32 processes.
The computing in the network (COIN) paradigm has emerged as a potential solution for computation-intensive applications like the metaverse by utilizing unused network resources. The blockchain (BC) guarantees task-offloading privacy, but cost reduction, queueing delays, and redundancy elimination remain open problems. This paper presents a redundancy-aware BC-based approach for the metaverse's partial computation offloading (PCO). Specifically, we formulate a joint BC redundancy factor (BRF) and PCO problem to minimize computation costs, maximize incentives, and meet delay and BC offloading constraints. We proved this problem is NP-hard and transformed it into two subproblems based on their temporal correlation: real-time PCO and Markov decision process-based BRF. We formulated the PCO problem as a multiuser game, proposed a decentralized algorithm for Nash equilibrium under any BC redundancy state, and designed a double deep Q-network-based algorithm for the optimal BRF policy. The BRF strategy is updated periodically based on user computation demand and network status to assist the PCO algorithm. The experimental results suggest that the proposed approach outperforms existing schemes, resulting in a remarkable 47% reduction in cost overhead, delivering approximately 64% higher rewards, and achieving convergence in just a few training episodes.
There is a rapidly-growing research interest in modeling user preferences via pre-training multi-domain interactions for recommender systems. However, Existing pre-trained multi-domain recommendations mostly select the item texts to be bridges across domains, and simply explore the user behaviors in target domains. Hence, they ignore other informative multi-modal item contents (e.g., visual information), and also lack of thorough consideration of user behaviors from all interactive domains. To address these issues, in this paper, we propose to pre-train universal multi-modal item content presentation for multi-domain recommendation, called UniM^2Rec, which could smoothly learn the multi-modal item content presentations and the multi-modal user preferences from all domains. With the pre-trained multi-domain recommendation model, UniM^2Rec could be efficiently and effectively transferred to new target domains in practice. Extensive experiments conducted on five real-world datasets in target domains demonstrate the superiority of the proposed method over existing competitive methods, especially for the real-world recommendation scenarios that usually struggle with seriously missing or noisy item contents.
Advancements in deep learning-based 3D object detection necessitate the availability of large-scale datasets. However, this requirement introduces the challenge of manual annotation, which is often both burdensome and time-consuming. To tackle this issue, the literature has seen the emergence of several weakly supervised frameworks for 3D object detection which can automatically generate pseudo labels for unlabeled data. Nevertheless, these generated pseudo labels contain noise and are not as accurate as those labeled by humans. In this paper, we present the first approach that addresses the inherent ambiguities present in pseudo labels by introducing an Evidential Deep Learning (EDL) based uncertainty estimation framework. Specifically, we propose MEDL-U, an EDL framework based on MTrans, which not only generates pseudo labels but also quantifies the associated uncertainties. However, applying EDL to 3D object detection presents three primary challenges: (1) relatively lower pseudolabel quality in comparison to other autolabelers; (2) excessively high evidential uncertainty estimates; and (3) lack of clear interpretability and effective utilization of uncertainties for downstream tasks. We tackle these issues through the introduction of an uncertainty-aware IoU-based loss, an evidence-aware multi-task loss function, and the implementation of a post-processing stage for uncertainty refinement. Our experimental results demonstrate that probabilistic detectors trained using the outputs of MEDL-U surpass deterministic detectors trained using outputs from previous 3D annotators on the KITTI val set for all difficulty levels. Moreover, MEDL-U achieves state-of-the-art results on the KITTI official test set compared to existing 3D automatic annotators.
Data assimilation addresses the problem of identifying plausible state trajectories of dynamical systems given noisy or incomplete observations. In geosciences, it presents challenges due to the high-dimensionality of geophysical dynamical systems, often exceeding millions of dimensions. This work assesses the scalability of score-based data assimilation (SDA), a novel data assimilation method, in the context of such systems. We propose modifications to the score network architecture aimed at significantly reducing memory consumption and execution time. We demonstrate promising results for a two-layer quasi-geostrophic model.
Due to their inherent capability in semantic alignment of aspects and their context words, attention mechanism and Convolutional Neural Networks (CNNs) are widely applied for aspect-based sentiment classification. However, these models lack a mechanism to account for relevant syntactical constraints and long-range word dependencies, and hence may mistakenly recognize syntactically irrelevant contextual words as clues for judging aspect sentiment. To tackle this problem, we propose to build a Graph Convolutional Network (GCN) over the dependency tree of a sentence to exploit syntactical information and word dependencies. Based on it, a novel aspect-specific sentiment classification framework is raised. Experiments on three benchmarking collections illustrate that our proposed model has comparable effectiveness to a range of state-of-the-art models, and further demonstrate that both syntactical information and long-range word dependencies are properly captured by the graph convolution structure.
Most deep learning-based models for speech enhancement have mainly focused on estimating the magnitude of spectrogram while reusing the phase from noisy speech for reconstruction. This is due to the difficulty of estimating the phase of clean speech. To improve speech enhancement performance, we tackle the phase estimation problem in three ways. First, we propose Deep Complex U-Net, an advanced U-Net structured model incorporating well-defined complex-valued building blocks to deal with complex-valued spectrograms. Second, we propose a polar coordinate-wise complex-valued masking method to reflect the distribution of complex ideal ratio masks. Third, we define a novel loss function, weighted source-to-distortion ratio (wSDR) loss, which is designed to directly correlate with a quantitative evaluation measure. Our model was evaluated on a mixture of the Voice Bank corpus and DEMAND database, which has been widely used by many deep learning models for speech enhancement. Ablation experiments were conducted on the mixed dataset showing that all three proposed approaches are empirically valid. Experimental results show that the proposed method achieves state-of-the-art performance in all metrics, outperforming previous approaches by a large margin.
Recently, ensemble has been applied to deep metric learning to yield state-of-the-art results. Deep metric learning aims to learn deep neural networks for feature embeddings, distances of which satisfy given constraint. In deep metric learning, ensemble takes average of distances learned by multiple learners. As one important aspect of ensemble, the learners should be diverse in their feature embeddings. To this end, we propose an attention-based ensemble, which uses multiple attention masks, so that each learner can attend to different parts of the object. We also propose a divergence loss, which encourages diversity among the learners. The proposed method is applied to the standard benchmarks of deep metric learning and experimental results show that it outperforms the state-of-the-art methods by a significant margin on image retrieval tasks.