This paper considers the problem of Bayesian transfer learning-based knowledge fusion between linear state-space processes driven by uniform state and observation noise processes. The target task conditions on probabilistic state predictor(s) supplied by the source filtering task(s) to improve its own state estimate. A joint model of the target and source(s) is not required and is not elicited. The resulting decision-making problem for choosing the optimal conditional target filtering distribution under incomplete modelling is solved via fully probabilistic design (FPD), i.e. via appropriate minimization of Kullback-Leibler divergence (KLD). The resulting FPD-optimal target learner is robust, in the sense that it can reject poor-quality source knowledge. In addition, the fact that this Bayesian transfer learning (BTL) scheme does not depend on a model of interaction between the source and target tasks ensures robustness to the misspecification of such a model. The latter is a problem that affects conventional transfer learning methods. The properties of the proposed BTL scheme are demonstrated via extensive simulations, and in comparison with two contemporary alternatives.
We present a novel approach to adaptive optimal design of groundwater surveys - a methodology for choosing the location of the next monitoring well. Our dual-weighted approach borrows ideas from Bayesian Optimisation and goal-oriented error estimation to propose the next monitoring well, given that some data is already available from existing wells. Our method is distinct from other optimal design strategies in that it does not rely on Fisher Information and it instead directly exploits the posterior uncertainty and the expected solution to a dual (or adjoint) problem to construct an acquisition function that optimally reduces the uncertainty in the model as a whole and some engineering quantity of interest in particular. We demonstrate our approach in the context of 2D groundwater flow example and show that employing the expectation of the dual solution as a weighting function improves the posterior estimate of the quantity of interest on average by a factor of 3, compared to the baseline approach, where only the posterior uncertainty is considered.
Gaussian Processes (GPs) are known to provide accurate predictions and uncertainty estimates even with small amounts of labeled data by capturing similarity between data points through their kernel function. However traditional GP kernels are not very effective at capturing similarity between high dimensional data points. Neural networks can be used to learn good representations that encode intricate structures in high dimensional data, and can be used as inputs to the GP kernel. However the huge data requirement of neural networks makes this approach ineffective in small data settings. To solves the conflicting problems of representation learning and data efficiency, we propose to learn deep kernels on probabilistic embeddings by using a probabilistic neural network. Our approach maps high-dimensional data to a probability distribution in a low dimensional subspace and then computes a kernel between these distributions to capture similarity. To enable end-to-end learning, we derive a functional gradient descent procedure for training the model. Experiments on a variety of datasets show that our approach outperforms the state-of-the-art in GP kernel learning in both supervised and semi-supervised settings. We also extend our approach to other small-data paradigms such as few-shot classification where it outperforms previous approaches on mini-Imagenet and CUB datasets.
We consider the problem of open-goal planning for robotic cloth manipulation. Core of our system is a neural network trained as a forward model of cloth behaviour under manipulation, with planning performed through backpropagation. We introduce a neural network-based routine for estimating mesh representations from voxel input, and perform planning in mesh format internally. We address the problem of planning with incomplete domain knowledge by means of an explicit epistemic uncertainty signal. This signal is calculated from prediction divergence between two instances of the forward model network and used to avoid epistemic uncertainty during planning. Finally, we introduce logic for handling restriction of grasp points to a discrete set of candidates, in order to accommodate graspability constraints imposed by robotic hardware. We evaluate the system's mesh estimation, prediction, and planning ability on simulated cloth for sequences of one to three manipulations. Comparative experiments confirm that planning on basis of estimated meshes improves accuracy compared to voxel-based planning, and that epistemic uncertainty avoidance improves performance under conditions of incomplete domain knowledge. Planning time cost is a few seconds. We additionally present qualitative results on robot hardware.
Trajectory optimization and model predictive control are essential techniques underpinning advanced robotic applications, ranging from autonomous driving to full-body humanoid control. State-of-the-art algorithms have focused on data-driven approaches that infer the system dynamics online and incorporate posterior uncertainty during planning and control. Despite their success, such approaches are still susceptible to catastrophic errors that may arise due to statistical learning biases, unmodeled disturbances, or even directed adversarial attacks. In this paper, we tackle the problem of dynamics mismatch and propose a distributionally robust optimal control formulation that alternates between two relative entropy trust-region optimization problems. Our method finds the worst-case maximum entropy Gaussian posterior over the dynamics parameters and the corresponding robust policy. Furthermore, we show that our approach admits a closed-form backward-pass for a certain class of systems. Finally, we demonstrate the resulting robustness on linear and nonlinear numerical examples.
Personalized recommender systems are playing an increasingly important role as more content and services become available and users struggle to identify what might interest them. Although matrix factorization and deep learning based methods have proved effective in user preference modeling, they violate the triangle inequality and fail to capture fine-grained preference information. To tackle this, we develop a distance-based recommendation model with several novel aspects: (i) each user and item are parameterized by Gaussian distributions to capture the learning uncertainties; (ii) an adaptive margin generation scheme is proposed to generate the margins regarding different training triplets; (iii) explicit user-user/item-item similarity modeling is incorporated in the objective function. The Wasserstein distance is employed to determine preferences because it obeys the triangle inequality and can measure the distance between probabilistic distributions. Via a comparison using five real-world datasets with state-of-the-art methods, the proposed model outperforms the best existing models by 4-22% in terms of recall@K on Top-K recommendation.
This paper studies the problem of domain division problem which aims to segment instances drawn from different probabilistic distributions. Such a problem exists in many previous recognition tasks, such as Open Set Learning (OSL) and Generalized Zero-Shot Learning (G-ZSL), where the testing instances come from either seen or novel/unseen classes of different probabilistic distributions. Previous works focused on either only calibrating the confident prediction of classifiers of seen classes (W-SVM), or taking unseen classes as outliers. In contrast, this paper proposes a probabilistic way of directly estimating and fine-tuning the decision boundary between seen and novel/unseen classes. In particular, we propose a domain division algorithm of learning to split the testing instances into known, unknown and uncertain domains, and then conduct recognize tasks in each domain. Two statistical tools, namely, bootstrapping and Kolmogorov-Smirnov (K-S) Test, for the first time, are introduced to discover and fine-tune the decision boundary of each domain. Critically, the uncertain domain is newly introduced in our framework to adopt those instances whose domain cannot be predicted confidently. Extensive experiments demonstrate that our approach achieved the state-of-the-art performance on OSL and G-ZSL benchmarks.
Knowledge graphs contain rich relational structures of the world, and thus complement data-driven machine learning in heterogeneous data. One of the most effective methods in representing knowledge graphs is to embed symbolic relations and entities into continuous spaces, where relations are approximately linear translation between projected images of entities in the relation space. However, state-of-the-art relation projection methods such as TransR, TransD or TransSparse do not model the correlation between relations, and thus are not scalable to complex knowledge graphs with thousands of relations, both in computational demand and in statistical robustness. To this end we introduce TransF, a novel translation-based method which mitigates the burden of relation projection by explicitly modeling the basis subspaces of projection matrices. As a result, TransF is far more light weight than the existing projection methods, and is robust when facing a high number of relations. Experimental results on the canonical link prediction task show that our proposed model outperforms competing rivals by a large margin and achieves state-of-the-art performance. Especially, TransF improves by 9%/5% in the head/tail entity prediction task for N-to-1/1-to-N relations over the best performing translation-based method.
Modern communication networks have become very complicated and highly dynamic, which makes them hard to model, predict and control. In this paper, we develop a novel experience-driven approach that can learn to well control a communication network from its own experience rather than an accurate mathematical model, just as a human learns a new skill (such as driving, swimming, etc). Specifically, we, for the first time, propose to leverage emerging Deep Reinforcement Learning (DRL) for enabling model-free control in communication networks; and present a novel and highly effective DRL-based control framework, DRL-TE, for a fundamental networking problem: Traffic Engineering (TE). The proposed framework maximizes a widely-used utility function by jointly learning network environment and its dynamics, and making decisions under the guidance of powerful Deep Neural Networks (DNNs). We propose two new techniques, TE-aware exploration and actor-critic-based prioritized experience replay, to optimize the general DRL framework particularly for TE. To validate and evaluate the proposed framework, we implemented it in ns-3, and tested it comprehensively with both representative and randomly generated network topologies. Extensive packet-level simulation results show that 1) compared to several widely-used baseline methods, DRL-TE significantly reduces end-to-end delay and consistently improves the network utility, while offering better or comparable throughput; 2) DRL-TE is robust to network changes; and 3) DRL-TE consistently outperforms a state-ofthe-art DRL method (for continuous control), Deep Deterministic Policy Gradient (DDPG), which, however, does not offer satisfying performance.
The task of {\em data fusion} is to identify the true values of data items (eg, the true date of birth for {\em Tom Cruise}) among multiple observed values drawn from different sources (eg, Web sites) of varying (and unknown) reliability. A recent survey\cite{LDL+12} has provided a detailed comparison of various fusion methods on Deep Web data. In this paper, we study the applicability and limitations of different fusion techniques on a more challenging problem: {\em knowledge fusion}. Knowledge fusion identifies true subject-predicate-object triples extracted by multiple information extractors from multiple information sources. These extractors perform the tasks of entity linkage and schema alignment, thus introducing an additional source of noise that is quite different from that traditionally considered in the data fusion literature, which only focuses on factual errors in the original sources. We adapt state-of-the-art data fusion techniques and apply them to a knowledge base with 1.6B unique knowledge triples extracted by 12 extractors from over 1B Web pages, which is three orders of magnitude larger than the data sets used in previous data fusion papers. We show great promise of the data fusion approaches in solving the knowledge fusion problem, and suggest interesting research directions through a detailed error analysis of the methods.