The aim of this workshop is to give researchers from academia and industry the possibility to discuss the inter-and multi-disciplinary nature of the relationships between people and robots towards effective and long-lasting collaborations. This workshop will provide a forum for the HRI and robotics communities to explore successful human-robot interaction (HRI) to analyse the different aspects of HRI that impact its success. Particular focus are the AI algorithms required to implement autonomous interactions, and the factors that enhance, undermine, or recover humans' trust in robots. Finally, potential ethical and legal concerns, and how they can be addressed will be considered. Website: //sites.google.com/view/traits-hri
It is well known that users on open blockchains are tracked by an industry providing services to governments, law enforcement, secret services, and alike. While most blockchains do not protect their users' privacy and allow external observers to link transactions and addresses, a growing research interest attempts to design add-on privacy solutions to help users regain their privacy on non-private blockchains. In this work, we propose to our knowledge the first censorship resilient mixer, which can reward its users in a privacy-preserving manner for participating in the system. Increasing the anonymity set size, and diversity of users, is, as we believe, an important endeavor to raise a mixer's contributed privacy in practice. The paid-out rewards can take the form of governance tokens to decentralize the voting on system parameters, similar to how popular "DeFi farming" protocols operate. Moreover, by leveraging existing "Defi" lending platforms, AMR is the first mixer design that allows participating clients to earn financial interests on their deposited funds. Our system AMR is autonomous as it does not rely on any external server or third party. The evaluation of our AMR implementation shows that the system supports today on Ethereum anonymity set sizes beyond thousands of users, and a capacity of over $66,000$ deposits per day, at constant system costs. We provide a formal specification of our zksnark-based AMR system, a privacy and security analysis, implementation, and evaluation with both the MiMC and Poseidon hash functions.
Distance transformation is an image processing technique used for many different applications. Related to a binary image, the general idea is to determine the distance of all background points to the nearest object point (or vice versa). In this tutorial, different approaches are explained in detail and compared using examples. Corresponding source code is provided to facilitate own investigations. A particular objective of this tutorial is to clarify the difference between arbitrary distance transforms and exact Euclidean distance transformations.
Context: Given the acknowledged need to understand the people processes enacted during software development, software repositories and mailing lists have become a focus for many studies. However, researchers have tended to use mostly mathematical and frequency-based techniques to examine the software artifacts contained within them. Objective: There is growing recognition that these approaches uncover only a partial picture of what happens during software projects, and deeper contextual approaches may provide further understanding of the intricate nature of software teams' dynamics. We demonstrate the relevance and utility of such approaches in this study. Method: We use psycholinguistics and directed content analysis (CA) to study the way project tasks drive teams' attitudes and knowledge sharing. We compare the outcomes of these two approaches and offer methodological advice for researchers using similar forms of repository data. Results: Our analysis reveals significant differences in the way teams work given their portfolio of tasks and the distribution of roles. Conclusion: We overcome the limitations associated with employing purely quantitative approaches, while avoiding the time-intensive and potentially invasive nature of field work required in full case studies.
The NLP community has seen substantial recent interest in grounding to facilitate interaction between language technologies and the world. However, as a community, we use the term broadly to reference any linking of text to data or non-textual modality. In contrast, Cognitive Science more formally defines "grounding" as the process of establishing what mutual information is required for successful communication between two interlocutors -- a definition which might implicitly capture the NLP usage but differs in intent and scope. We investigate the gap between these definitions and seek answers to the following questions: (1) What aspects of grounding are missing from NLP tasks? Here we present the dimensions of coordination, purviews and constraints. (2) How is the term "grounding" used in the current research? We study the trends in datasets, domains, and tasks introduced in recent NLP conferences. And finally, (3) How to advance our current definition to bridge the gap with Cognitive Science? We present ways to both create new tasks or repurpose existing ones to make advancements towards achieving a more complete sense of grounding.
Trust in robots has been gathering attention from multiple directions, as it has special relevance in the theoretical descriptions of human-robot interactions. It is essential for reaching high acceptance and usage rates of robotic technologies in society, as well as for enabling effective human-robot teaming. Researchers have been trying to model the development of trust in robots to improve the overall rapport between humans and robots. Unfortunately, the miscalibration of trust in automation is a common issue that jeopardizes the effectiveness of automation use. It happens when a user's trust levels are not appropriate to the capabilities of the automation being used. Users can be: under-trusting the automation -- when they do not use the functionalities that the machine can perform correctly because of a lack of trust; or over-trusting the automation -- when, due to an excess of trust, they use the machine in situations where its capabilities are not adequate. The main objective of this work is to examine driver's trust development in the ADS. We aim to model how risk factors (e.g.: false alarms and misses from the ADS) and the short-term interactions associated with these risk factors influence the dynamics of drivers' trust in the ADS. The driving context facilitates the instrumentation to measure trusting behaviors, such as drivers' eye movements and usage time of the automated features. Our findings indicate that a reliable characterization of drivers' trusting behaviors and a consequent estimation of trust levels is possible. We expect that these techniques will permit the design of ADSs able to adapt their behaviors to attempt to adjust driver's trust levels. This capability could avoid under- and over-trusting, which could harm their safety or their performance.
In recent years with the rise of Cloud Computing (CC), many companies providing services in the cloud, are empowered a new series of services to their catalog, such as data mining (DM) and data processing, taking advantage of the vast computing resources available to them. Different service definition proposals have been proposed to address the problem of describing services in CC in a comprehensive way. Bearing in mind that each provider has its own definition of the logic of its services, and specifically of DM services, it should be pointed out that the possibility of describing services in a flexible way between providers is fundamental in order to maintain the usability and portability of this type of CC services. The use of semantic technologies based on the proposal offered by Linked Data (LD) for the definition of services, allows the design and modelling of DM services, achieving a high degree of interoperability. In this article a schema for the definition of DM services on CC is presented, in addition are considered all key aspects of service in CC, such as prices, interfaces, Software Level Agreement, instances or workflow of experimentation, among others. The proposal presented is based on LD, so that it reuses other schemata obtaining a best definition of the service. For the validation of the schema, a series of DM services have been created where some of the best known algorithms such as \textit{Random Forest} or \textit{KMeans} are modeled as services.
This paper identifies the factors that have an impact on mobile recommender systems. Recommender systems have become a technology that has been widely used by various online applications in situations where there is an information overload problem. Numerous applications such as e-Commerce, video platforms and social networks provide personalized recommendations to their users and this has improved the user experience and vendor revenues. The development of recommender systems has been focused mostly on the proposal of new algorithms that provide more accurate recommendations. However, the use of mobile devices and the rapid growth of the internet and networking infrastructure has brought the necessity of using mobile recommender systems. The links between web and mobile recommender systems are described along with how the recommendations in mobile environments can be improved. This work is focused on identifying the links between web and mobile recommender systems and to provide solid future directions that aim to lead in a more integrated mobile recommendation domain.
Music recommender systems (MRS) have experienced a boom in recent years, thanks to the emergence and success of online streaming services, which nowadays make available almost all music in the world at the user's fingertip. While today's MRS considerably help users to find interesting music in these huge catalogs, MRS research is still facing substantial challenges. In particular when it comes to build, incorporate, and evaluate recommendation strategies that integrate information beyond simple user--item interactions or content-based descriptors, but dig deep into the very essence of listener needs, preferences, and intentions, MRS research becomes a big endeavor and related publications quite sparse. The purpose of this trends and survey article is twofold. We first identify and shed light on what we believe are the most pressing challenges MRS research is facing, from both academic and industry perspectives. We review the state of the art towards solving these challenges and discuss its limitations. Second, we detail possible future directions and visions we contemplate for the further evolution of the field. The article should therefore serve two purposes: giving the interested reader an overview of current challenges in MRS research and providing guidance for young researchers by identifying interesting, yet under-researched, directions in the field.
The field of Multi-Agent System (MAS) is an active area of research within Artificial Intelligence, with an increasingly important impact in industrial and other real-world applications. Within a MAS, autonomous agents interact to pursue personal interests and/or to achieve common objectives. Distributed Constraint Optimization Problems (DCOPs) have emerged as one of the prominent agent architectures to govern the agents' autonomous behavior, where both algorithms and communication models are driven by the structure of the specific problem. During the last decade, several extensions to the DCOP model have enabled them to support MAS in complex, real-time, and uncertain environments. This survey aims at providing an overview of the DCOP model, giving a classification of its multiple extensions and addressing both resolution methods and applications that find a natural mapping within each class of DCOPs. The proposed classification suggests several future perspectives for DCOP extensions, and identifies challenges in the design of efficient resolution algorithms, possibly through the adaptation of strategies from different areas.
This paper surveys the current state of the art in Natural Language Generation (NLG), defined as the task of generating text or speech from non-linguistic input. A survey of NLG is timely in view of the changes that the field has undergone over the past decade or so, especially in relation to new (usually data-driven) methods, as well as new applications of NLG technology. This survey therefore aims to (a) give an up-to-date synthesis of research on the core tasks in NLG and the architectures adopted in which such tasks are organised; (b) highlight a number of relatively recent research topics that have arisen partly as a result of growing synergies between NLG and other areas of artificial intelligence; (c) draw attention to the challenges in NLG evaluation, relating them to similar challenges faced in other areas of Natural Language Processing, with an emphasis on different evaluation methods and the relationships between them.