亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper studies a Group Influence with Minimum cost which aims to find a seed set with smallest cost that can influence all target groups, where each user is associated with a cost and a group is influenced if the total score of the influenced users belonging to the group is at least a certain threshold. As the group-influence function is neither submodular nor supermodular, theoretical bounds on the quality of solutions returned by the well-known greedy approach may not be guaranteed. To address this challenge, we propose a bi-criteria polynomial-time approximation algorithm with high certainty. At the heart of the algorithm is a novel group reachable reverse sample concept, which helps speed up the estimation of the group influence function. Finally, extensive experiments conducted on real social networks show that our proposed algorithm outperform the state-of-the-art algorithms in terms of the objective value and the running time.

相關內容

Group一直是研究計算機支持的合作工作、人機交互、計算機支持的協作學習和社會技術研究的主要場所。該會議將社會科學、計算機科學、工程、設計、價值觀以及其他與小組工作相關的多個不同主題的工作結合起來,并進行了廣泛的概念化。官網鏈接: · Weight · MoDELS · 優化器 · Processing(編程語言) ·
2022 年 1 月 10 日

We consider a multi-source network with a common monitor, where fresh updates are generated at each source, following a Poisson process. At any time, at most one source can transmit its update to the monitor, and transmission time for updates of each source follows some general distribution. The goal is to find a causal scheduling policy such that at any time, the latest update available at each source is fresh. In this paper, we quantify freshness using the age of information (AoI) metric, and propose a randomized policy, which we show is 3-competitive with respect to Pareto-optimal policies (that minimize the expected average AoI of each source). We also show that for a particular choice of the randomization parameter, the proposed randomized policy is 3-competitive with respect to an optimal policy that minimizes the weighted sum of the expected average AoI of all sources.

Semi-supervised learning has received attention from researchers, as it allows one to exploit the structure of unlabeled data to achieve competitive classification results with much fewer labels than supervised approaches. The Local and Global Consistency (LGC) algorithm is one of the most well-known graph-based semi-supervised (GSSL) classifiers. Notably, its solution can be written as a linear combination of the known labels. The coefficients of this linear combination depend on a parameter $\alpha$, determining the decay of the reward over time when reaching labeled vertices in a random walk. In this work, we discuss how removing the self-influence of a labeled instance may be beneficial, and how it relates to leave-one-out error. Moreover, we propose to minimize this leave-one-out loss with automatic differentiation. Within this framework, we propose methods to estimate label reliability and diffusion rate. Optimizing the diffusion rate is more efficiently accomplished with a spectral representation. Results show that the label reliability approach competes with robust L1-norm methods and that removing diagonal entries reduces the risk of overfitting and leads to suitable criteria for parameter selection.

In this paper, we study the problem of designing experiments that are conducted on a set of units such as users or groups of users in an online marketplace, for multiple time periods such as weeks or months. These experiments are particularly useful to study the treatments that have causal effects on both current and future outcomes (instantaneous and lagged effects). The design problem involves selecting a treatment time for each unit, before or during the experiment, in order to most precisely estimate the instantaneous and lagged effects, post experimentation. This optimization of the treatment decisions can directly minimize the opportunity cost of the experiment by reducing its sample size requirement. The optimization is an NP-hard integer program for which we provide a near-optimal solution, when the design decisions are performed all at the beginning (fixed-sample-size designs). Next, we study sequential experiments that allow adaptive decisions during the experiments, and also potentially early stop the experiments, further reducing their cost. However, the sequential nature of these experiments complicates both the design phase and the estimation phase. We propose a new algorithm, PGAE, that addresses these challenges by adaptively making treatment decisions, estimating the treatment effects, and drawing valid post-experimentation inference. PGAE combines ideas from Bayesian statistics, dynamic programming, and sample splitting. Using synthetic experiments on real data sets from multiple domains, we demonstrate that our proposed solutions for fixed-sample-size and sequential experiments reduce the opportunity cost of the experiments by over 50% and 70%, respectively, compared to benchmarks.

We study the selection of adjustment sets for estimating the interventional mean under an individualized treatment rule. We assume a non-parametric causal graphical model with, possibly, hidden variables and at least one adjustment set comprised of observable variables. Moreover, we assume that observable variables have positive costs associated with them. We define the cost of an observable adjustment set as the sum of the costs of the variables that comprise it. We show that in this setting there exist adjustment sets that are minimum cost optimal, in the sense that they yield non-parametric estimators of the interventional mean with the smallest asymptotic variance among those that control for observable adjustment sets that have minimum cost. Our results are based on the construction of a special flow network associated with the original causal graph. We show that a minimum cost optimal adjustment set can be found by computing a maximum flow on the network, and then finding the set of vertices that are reachable from the source by augmenting paths. The optimaladj Python package implements the algorithms introduced in this paper.

We perform a systematic analysis of the quality of fit of the stochastic block model (SBM) for 275 empirical networks spanning a wide range of domains and orders of size magnitude. We employ posterior predictive model checking as a criterion to assess the quality of fit, which involves comparing networks generated by the inferred model with the empirical network, according to a set of network descriptors. We observe that the SBM is capable of providing an accurate description for the majority of networks considered, but falls short of saturating all modeling requirements. In particular, networks possessing a large diameter and slow-mixing random walks tend to be badly described by the SBM. However, contrary to what is often assumed, networks with a high abundance of triangles can be well described by the SBM in many cases. We demonstrate that simple network descriptors can be used to evaluate whether or not the SBM can provide a sufficiently accurate representation, potentially pointing to possible model extensions that can systematically improve the expressiveness of this class of models.

Stochastic majorization-minimization (SMM) is an online extension of the classical principle of majorization-minimization, which consists of sampling i.i.d. data points from a fixed data distribution and minimizing a recursively defined majorizing surrogate of an objective function. In this paper, we introduce stochastic block majorization-minimization, where the surrogates can now be only block multi-convex and a single block is optimized at a time within a diminishing radius. Relaxing the standard strong convexity requirements for surrogates in SMM, our framework gives wider applicability including online CANDECOMP/PARAFAC (CP) dictionary learning and yields greater computational efficiency especially when the problem dimension is large. We provide an extensive convergence analysis on the proposed algorithm, which we derive under possibly dependent data streams, relaxing the standard i.i.d. assumption on data samples. We show that the proposed algorithm converges almost surely to the set of stationary points of a nonconvex objective under constraints at a rate $O((\log n)^{1+\eps}/n^{1/2})$ for the empirical loss function and $O((\log n)^{1+\eps}/n^{1/4})$ for the expected loss function, where $n$ denotes the number of data samples processed. Under some additional assumption, the latter convergence rate can be improved to $O((\log n)^{1+\eps}/n^{1/2})$. Our results provide first convergence rate bounds for various online matrix and tensor decomposition algorithms under a general Markovian data setting.

Although Deep Neural Networks (DNNs) have shown incredible performance in perceptive and control tasks, several trustworthy issues are still open. One of the most discussed topics is the existence of adversarial perturbations, which has opened an interesting research line on provable techniques capable of quantifying the robustness of a given input. In this regard, the Euclidean distance of the input from the classification boundary denotes a well-proved robustness assessment as the minimal affordable adversarial perturbation. Unfortunately, computing such a distance is highly complex due the non-convex nature of NNs. Despite several methods have been proposed to address this issue, to the best of our knowledge, no provable results have been presented to estimate and bound the error committed. This paper addresses this issue by proposing two lightweight strategies to find the minimal adversarial perturbation. Differently from the state-of-the-art, the proposed approach allows formulating an error estimation theory of the approximate distance with respect to the theoretical one. Finally, a substantial set of experiments is reported to evaluate the performance of the algorithms and support the theoretical findings. The obtained results show that the proposed strategies approximate the theoretical distance for samples close to the classification boundary, leading to provable robustness guarantees against any adversarial attacks.

The collective attention on online items such as web pages, search terms, and videos reflects trends that are of social, cultural, and economic interest. Moreover, attention trends of different items exhibit mutual influence via mechanisms such as hyperlinks or recommendations. Many visualisation tools exist for time series, network evolution, or network influence; however, few systems connect all three. In this work, we present AttentionFlow, a new system to visualise networks of time series and the dynamic influence they have on one another. Centred around an ego node, our system simultaneously presents the time series on each node using two visual encodings: a tree ring for an overview and a line chart for details. AttentionFlow supports interactions such as overlaying time series of influence and filtering neighbours by time or flux. We demonstrate AttentionFlow using two real-world datasets, VevoMusic and WikiTraffic. We show that attention spikes in songs can be explained by external events such as major awards, or changes in the network such as the release of a new song. Separate case studies also demonstrate how an artist's influence changes over their career, and that correlated Wikipedia traffic is driven by cultural interests. More broadly, AttentionFlow can be generalised to visualise networks of time series on physical infrastructures such as road networks, or natural phenomena such as weather and geological measurements.

Implicit probabilistic models are models defined naturally in terms of a sampling procedure and often induces a likelihood function that cannot be expressed explicitly. We develop a simple method for estimating parameters in implicit models that does not require knowledge of the form of the likelihood function or any derived quantities, but can be shown to be equivalent to maximizing likelihood under some conditions. Our result holds in the non-asymptotic parametric setting, where both the capacity of the model and the number of data examples are finite. We also demonstrate encouraging experimental results.

In this work, we consider the distributed optimization of non-smooth convex functions using a network of computing units. We investigate this problem under two regularity assumptions: (1) the Lipschitz continuity of the global objective function, and (2) the Lipschitz continuity of local individual functions. Under the local regularity assumption, we provide the first optimal first-order decentralized algorithm called multi-step primal-dual (MSPD) and its corresponding optimal convergence rate. A notable aspect of this result is that, for non-smooth functions, while the dominant term of the error is in $O(1/\sqrt{t})$, the structure of the communication network only impacts a second-order term in $O(1/t)$, where $t$ is time. In other words, the error due to limits in communication resources decreases at a fast rate even in the case of non-strongly-convex objective functions. Under the global regularity assumption, we provide a simple yet efficient algorithm called distributed randomized smoothing (DRS) based on a local smoothing of the objective function, and show that DRS is within a $d^{1/4}$ multiplicative factor of the optimal convergence rate, where $d$ is the underlying dimension.

北京阿比特科技有限公司