We consider a multi-source network with a common monitor, where fresh updates are generated at each source, following a Poisson process. At any time, at most one source can transmit its update to the monitor, and transmission time for updates of each source follows some general distribution. The goal is to find a causal scheduling policy such that at any time, the latest update available at each source is fresh. In this paper, we quantify freshness using the age of information (AoI) metric, and propose a randomized policy, which we show is 3-competitive with respect to Pareto-optimal policies (that minimize the expected average AoI of each source). We also show that for a particular choice of the randomization parameter, the proposed randomized policy is 3-competitive with respect to an optimal policy that minimizes the weighted sum of the expected average AoI of all sources.
The design of effective online caching policies is an increasingly important problem for content distribution networks, online social networks and edge computing services, among other areas. This paper proposes a new algorithmic toolbox for tackling this problem through the lens of optimistic online learning. We build upon the Follow-the-Regularized-Leader (FTRL) framework which is developed further here to include predictions for the file requests, and we design online caching algorithms for bipartite networks with fixed-size caches or elastic leased caches subject to time-average budget constraints. The predictions are provided by a content recommendation system that influences the users viewing activity, and hence can naturally reduce the caching network's uncertainty about future requests. We prove that the proposed optimistic learning caching policies can achieve sub-zero performance loss (regret) for perfect predictions, and maintain the best achievable regret bound $O(\sqrt T)$ even for arbitrary-bad predictions. The performance of the proposed algorithms is evaluated with detailed trace-driven numerical tests.
We introduce a new constrained optimization method for policy gradient reinforcement learning, which uses two trust regions to regulate each policy update. In addition to using the proximity of one single old policy as the first trust region as done by prior works, we propose to form a second trust region through the construction of another virtual policy that represents a wide range of past policies. We then enforce the new policy to stay closer to the virtual policy, which is beneficial in case the old policy performs badly. More importantly, we propose a mechanism to automatically build the virtual policy from a memory buffer of past policies, providing a new capability for dynamically selecting appropriate trust regions during the optimization process. Our proposed method, dubbed as Memory-Constrained Policy Optimization (MCPO), is examined on a diverse suite of environments including robotic locomotion control, navigation with sparse rewards and Atari games, consistently demonstrating competitive performance against recent on-policy constrained policy gradient methods.
Industrial Control Systems (ICSs) rely on insecure protocols and devices to monitor and operate critical infrastructure. Prior work has demonstrated that powerful attackers with detailed system knowledge can manipulate exchanged sensor data to deteriorate performance of the process, even leading to full shutdowns of plants. Identifying those attacks requires iterating over all possible sensor values, and running detailed system simulation or analysis to identify optimal attacks. That setup allows adversaries to identify attacks that are most impactful when applied on the system for the first time, before the system operators become aware of the manipulations. In this work, we investigate if constrained attackers without detailed system knowledge and simulators can identify comparable attacks. In particular, the attacker only requires abstract knowledge on general information flow in the plant, instead of precise algorithms, operating parameters, process models, or simulators. We propose an approach that allows single-shot attacks, i.e., near-optimal attacks that are reliably shutting down a system on the first try. The approach is applied and validated on two use cases, and demonstrated to achieve comparable results to prior work, which relied on detailed system information and simulations.
Community detection refers to the problem of clustering the nodes of a network into groups. Existing inferential methods for community structure mainly focus on unweighted (binary) networks. Many real-world networks are nonetheless weighted and a common practice is to dichotomize a weighted network to an unweighted one which is known to result in information loss. Literature on hypothesis testing in the latter situation is still missing. In this paper, we study the problem of testing the existence of community structure in weighted networks. Our contributions are threefold: (a). We use the (possibly infinite-dimensional) exponential family to model the weights and derive the sharp information-theoretic limit for the existence of consistent test. Within the limit, any test is inconsistent; and beyond the limit, we propose a useful consistent test. (b). Based on the information-theoretic limits, we provide the first formal way to quantify the loss of information incurred by dichotomizing weighted graphs into unweighted graphs in the context of hypothesis testing. (c). We propose several new and practically useful test statistics. Simulation study show that the proposed tests have good performance. Finally, we apply the proposed tests to an animal social network.
Follow-the-Regularized-Lead (FTRL) and Online Mirror Descent (OMD) are regret minimization algorithms for Online Convex Optimization (OCO), they are mathematically elegant but less practical in solving Extensive-Form Games (EFGs). Counterfactual Regret Minimization (CFR) is a technique for approximating Nash equilibria in EFGs. CFR and its variants have a fast convergence rate in practice, but their theoretical results are not satisfactory. In recent years, researchers have been trying to link CFRs with OCO algorithms, which may provide new theoretical results and inspire new algorithms. However, existing analysis is restricted to local decision points. In this paper, we show that CFRs with Regret Matching and Regret Matching+ are equivalent to special cases of FTRL and OMD, respectively. According to these equivalences, a new FTRL and a new OMD algorithm, which can be considered as extensions of vanilla CFR and CFR+, are derived. The experimental results show that the two variants converge faster than conventional FTRL and OMD, even faster than vanilla CFR and CFR+ in some EFGs.
Data collection and research methodology represents a critical part of the research pipeline. On the one hand, it is important that we collect data in a way that maximises the validity of what we are measuring, which may involve the use of long scales with many items. On the other hand, collecting a large number of items across multiple scales results in participant fatigue, and expensive and time consuming data collection. It is therefore important that we use the available resources optimally. In this work, we consider how a consideration for theory and the associated causal/structural model can help us to streamline data collection procedures by not wasting time collecting data for variables which are not causally critical for subsequent analysis. This not only saves time and enables us to redirect resources to attend to other variables which are more important, but also increases research transparency and the reliability of theory testing. In order to achieve this streamlined data collection, we leverage structural models, and Markov conditional independency structures implicit in these models to identify the substructures which are critical for answering a particular research question. In this work, we review the relevant concepts and present a number of didactic examples with the hope that psychologists can use these techniques to streamline their data collection process without invalidating the subsequent analysis. We provide a number of simulation results to demonstrate the limited analytical impact of this streamlining.
We provide a decision theoretic analysis of bandit experiments. The setting corresponds to a dynamic programming problem, but solving this directly is typically infeasible. Working within the framework of diffusion asymptotics, we define suitable notions of asymptotic Bayes and minimax risk for bandit experiments. For normally distributed rewards, the minimal Bayes risk can be characterized as the solution to a nonlinear second-order partial differential equation (PDE). Using a limit of experiments approach, we show that this PDE characterization also holds asymptotically under both parametric and non-parametric distribution of the rewards. The approach further describes the state variables it is asymptotically sufficient to restrict attention to, and therefore suggests a practical strategy for dimension reduction. The upshot is that we can approximate the dynamic programming problem defining the bandit experiment with a PDE which can be efficiently solved using sparse matrix routines. We derive the optimal Bayes and minimax policies from the numerical solutions to these equations. The proposed policies substantially dominate existing methods such as Thompson sampling. The framework also allows for substantial generalizations to the bandit problem such as time discounting and pure exploration motives.
In this paper we study the finite sample and asymptotic properties of various weighting estimators of the local average treatment effect (LATE), several of which are based on Abadie (2003)'s kappa theorem. Our framework presumes a binary endogenous explanatory variable ("treatment") and a binary instrumental variable, which may only be valid after conditioning on additional covariates. We argue that one of the Abadie estimators, which we show is weight normalized, is likely to dominate the others in many contexts. A notable exception is in settings with one-sided noncompliance, where certain unnormalized estimators have the advantage of being based on a denominator that is bounded away from zero. We use a simulation study and three empirical applications to illustrate our findings. In applications to causal effects of college education using the college proximity instrument (Card, 1995) and causal effects of childbearing using the sibling sex composition instrument (Angrist and Evans, 1998), the unnormalized estimates are clearly unreasonable, with "incorrect" signs, magnitudes, or both. Overall, our results suggest that (i) the relative performance of different kappa weighting estimators varies with features of the data-generating process; and that (ii) the normalized version of Tan (2006)'s estimator may be an attractive alternative in many contexts. Applied researchers with access to a binary instrumental variable should also consider covariate balancing or doubly robust estimators of the LATE.
CP decomposition (CPD) is prevalent in chemometrics, signal processing, data mining and many more fields. While many algorithms have been proposed to compute the CPD, alternating least squares (ALS) remains one of the most widely used algorithm for computing the decomposition. Recent works have introduced the notion of eigenvalues and singular values of a tensor and explored applications of eigenvectors and singular vectors in areas like signal processing, data analytics and in various other fields. We introduce a new formulation for deriving singular values and vectors of a tensor by considering the critical points of a function different from what is used in the previous work. Computing these critical points in an alternating manner motivates an alternating optimization algorithm which corresponds to alternating least squares algorithm in the matrix case. However, for tensors with order greater than equal to $3$, it minimizes an objective function which is different from the commonly used least squares loss. Alternating optimization of this new objective leads to simple updates to the factor matrices with the same asymptotic computational cost as ALS. We show that a subsweep of this algorithm can achieve a superlinear convergence rate for exact CPD with known rank and verify it experimentally. We then view the algorithm as optimizing a Mahalanobis distance with respect to each factor with ground metric dependent on the other factors. This perspective allows us to generalize our approach to interpolate between updates corresponding to the ALS and the new algorithm to manage the tradeoff between stability and fitness of the decomposition. Our experimental results show that for approximating synthetic and real-world tensors, this algorithm and its variants converge to a better conditioned decomposition with comparable and sometimes better fitness as compared to the ALS algorithm.
We present a pipelined multiplier with reduced activities and minimized interconnect based on online digit-serial arithmetic. The working precision has been truncated such that $p<n$ bits are used to compute $n$ bits product, resulting in significant savings in area and power. The digit slices follow variable precision according to input, increasing upto $p$ and then decreases according to the error profile. Pipelining has been done to achieve high throughput and low latency which is desirable for compute intensive inner products. Synthesis results of the proposed designs have been presented and compared with the non-pipelined online multiplier, pipelined online multiplier with full working precision and conventional serial-parallel and array multipliers. For $8, 16, 24$ and $32$ bit precision, the proposed low power pipelined design show upto $38\%$ and $44\%$ reduction in power and area respectively compared to the pipelined online multiplier without working precision truncation.