The $P_2$-packing problem asks for whether a graph contains $k$ vertex-disjoint paths each of length two. We continue the study of its kernelization algorithms, and develop a $5k$-vertex kernel.
The aim in packing problems is to decide if a given set of pieces can be placed inside a given container. A packing problem is defined by the types of pieces and containers to be handled, and the motions that are allowed to move the pieces. The pieces must be placed so that in the resulting placement, they are pairwise interior-disjoint. We establish a framework which enables us to show that for many combinations of allowed pieces, containers and motions, the resulting problem is $\exists \mathbb{R}$-complete. This means that the problem is equivalent (under polynomial time reductions) to deciding whether a given system of polynomial equations and inequalities with integer coefficients has a real solution. We consider packing problems where only translations are allowed as the motions, and problems where arbitrary rigid motions are allowed, i.e., both translations and rotations. When rotations are allowed, we show that it is an $\exists \mathbb{R}$-complete problem to decide if a set of convex polygons, each of which has at most $7$ corners, can be packed into a square. Restricted to translations, we show that the following problems are $\exists \mathbb{R}$-complete: (i) pieces bounded by segments and hyperbolic curves to be packed in a square, and (ii) convex polygons to be packed in a container bounded by segments and hyperbolic curves.
We describe a polynomial-time algorithm which, given a graph $G$ with treewidth $t$, approximates the pathwidth of $G$ to within a ratio of $O(t\sqrt{\log t})$. This is the first algorithm to achieve an $f(t)$-approximation for some function $f$. Our approach builds on the following key insight: every graph with large pathwidth has large treewidth or contains a subdivision of a large complete binary tree. Specifically, we show that every graph with pathwidth at least $th+2$ has treewidth at least $t$ or contains a subdivision of a complete binary tree of height $h+1$. The bound $th+2$ is best possible up to a multiplicative constant. This result was motivated by, and implies (with $c=2$), the following conjecture of Kawarabayashi and Rossman (SODA'18): there exists a universal constant $c$ such that every graph with pathwidth $\Omega(k^c)$ has treewidth at least $k$ or contains a subdivision of a complete binary tree of height $k$. Our main technical algorithm takes a graph $G$ and some (not necessarily optimal) tree decomposition of $G$ of width $t'$ in the input, and it computes in polynomial time an integer $h$, a certificate that $G$ has pathwidth at least $h$, and a path decomposition of $G$ of width at most $(t'+1)h+1$. The certificate is closely related to (and implies) the existence of a subdivision of a complete binary tree of height $h$. The approximation algorithm for pathwidth is then obtained by combining this algorithm with the approximation algorithm of Feige, Hajiaghayi, and Lee (STOC'05) for treewidth.
We give a fast algorithm for sampling uniform solutions of general constraint satisfaction problems (CSPs) in a local lemma regime. The expected running time of our algorithm is near-linear in $n$ and a fixed polynomial in $\Delta$, where $n$ is the number of variables and $\Delta$ is the max degree of constraints. Previously, up to similar conditions, sampling algorithms with running time polynomial in both $n$ and $\Delta$, only existed for the almost atomic case, where each constraint is violated by a small number of forbidden local configurations. Our sampling approach departs from all previous fast algorithms for sampling LLL, which were based on Markov chains. A crucial step of our algorithm is a recursive marginal sampler that is of independent interests. Within a local lemma regime, this marginal sampler can draw a random value for a variable according to its marginal distribution, at a local cost independent of the size of the CSP.
We consider M-estimation problems, where the target value is determined using a minimizer of an expected functional of a Levy process. With discrete observations from the Levy process, we can produce a "quasi-path" by shuffling increments of the Levy process, we call it a quasi-process. Under a suitable sampling scheme, a quasi-process can converge weakly to the true process according to the properties of the stationary and independent increments. Using this resampling technique, we can estimate objective functionals similar to those estimated using the Monte Carlo simulations, and it is available as a contrast function. The M-estimator based on these quasi-processes can be consistent and asymptotically normal.
Computing a dense subgraph is a fundamental problem in graph mining, with a diverse set of applications ranging from electronic commerce to community detection in social networks. In many of these applications, the underlying context is better modelled as a weighted hypergraph that keeps evolving with time. This motivates the problem of maintaining the densest subhypergraph of a weighted hypergraph in a {\em dynamic setting}, where the input keeps changing via a sequence of updates (hyperedge insertions/deletions). Previously, the only known algorithm for this problem was due to Hu et al. [HWC17]. This algorithm worked only on unweighted hypergraphs, and had an approximation ratio of $(1+\epsilon)r^2$ and an update time of $O(\text{poly} (r, \log n))$, where $r$ denotes the maximum rank of the input across all the updates. We obtain a new algorithm for this problem, which works even when the input hypergraph is weighted. Our algorithm has a significantly improved (near-optimal) approximation ratio of $(1+\epsilon)$ that is independent of $r$, and a similar update time of $O(\text{poly} (r, \log n))$. It is the first $(1+\epsilon)$-approximation algorithm even for the special case of weighted simple graphs. To complement our theoretical analysis, we perform experiments with our dynamic algorithm on large-scale, real-world data-sets. Our algorithm significantly outperforms the state of the art [HWC17] both in terms of accuracy and efficiency.
We study the notion of local treewidth in sparse random graphs: the maximum treewidth over all $k$-vertex subgraphs of an $n$-vertex graph. When $k$ is not too large, we give nearly tight bounds for this local treewidth parameter; we also derive tight bounds for the local treewidth of noisy trees, trees where every non-edge is added independently with small probability. We apply our upper bounds on the local treewidth to obtain fixed parameter tractable algorithms (on random graphs and noisy trees) for edge-removal problems centered around containing a contagious process evolving over a network. In these problems, our main parameter of study is $k$, the number of "infected" vertices in the network. For a certain range of parameters the running time of our algorithms on $n$-vertex graphs is $2^{o(k)}\textrm{poly}(n)$, improving upon the $2^{\Omega(k)}\textrm{poly}(n)$ performance of the best-known algorithms designed for worst-case instances of these edge deletion problems.
We introduce a novel methodology for particle filtering in dynamical systems where the evolution of the signal of interest is described by a SDE and observations are collected instantaneously at prescribed time instants. The new approach includes the discretisation of the SDE and the design of efficient particle filters for the resulting discrete-time state-space model. The discretisation scheme converges with weak order 1 and it is devised to create a sequential dependence structure along the coordinates of the discrete-time state vector. We introduce a class of space-sequential particle filters that exploits this structure to improve performance when the system dimension is large. This is numerically illustrated by a set of computer simulations for a stochastic Lorenz 96 system with additive noise. The new space-sequential particle filters attain approximately constant estimation errors as the dimension of the Lorenz 96 system is increased, with a computational cost that increases polynomially, rather than exponentially, with the system dimension. Besides the new numerical scheme and particle filters, we provide in this paper a general framework for discrete-time filtering in continuous-time dynamical systems described by a SDE and instantaneous observations. Provided that the SDE is discretised using a weakly-convergent scheme, we prove that the marginal posterior laws of the resulting discrete-time state-space model converge to the posterior marginal posterior laws of the original continuous-time state-space model under a suitably defined metric. This result is general and not restricted to the numerical scheme or particle filters specifically studied in this manuscript.
For any small positive real $\varepsilon$ and integer $t > \frac{1}{\varepsilon}$, we build a graph with a vertex deletion set of size $t$ to a tree, and twin-width greater than $2^{(1-\varepsilon) t}$. In particular, this shows that the twin-width is sometimes exponential in the treewidth, in the so-called oriented twin-width and grid number, and that adding an apex may multiply the twin-width by at least $2-\varepsilon$. Except for the one in oriented twin-width, these lower bounds are essentially tight.
Extracting non-Gaussian information from the non-linear regime of structure formation is key to fully exploiting the rich data from upcoming cosmological surveys probing the large-scale structure of the universe. However, due to theoretical and computational complexities, this remains one of the main challenges in analyzing observational data. We present a set of summary statistics for cosmological matter fields based on 3D wavelets to tackle this challenge. These statistics are computed as the spatial average of the complex modulus of the 3D wavelet transform raised to a power $q$ and are therefore known as invariant wavelet moments. The 3D wavelets are constructed to be radially band-limited and separable on a spherical polar grid and come in three types: isotropic, oriented, and harmonic. In the Fisher forecast framework, we evaluate the performance of these summary statistics on matter fields from the Quijote suite, where they are shown to reach state-of-the-art parameter constraints on the base $\Lambda$CDM parameters, as well as the sum of neutrino masses. We show that we can improve constraints by a factor 5 to 10 in all parameters with respect to the power spectrum baseline.
Vector Perturbation Precoding (VPP) can speed up downlink data transmissions in Large and Massive Multi-User MIMO systems but is known to be NP-hard. While there are several algorithms in the literature for VPP under total power constraint, they are not applicable for VPP under per-antenna power constraint. This paper proposes a novel, parallel tree search algorithm for VPP under per-antenna power constraint, called \emph{\textbf{TreeStep}}, to find good quality solutions to the VPP problem with practical computational complexity. We show that our method can provide huge performance gain over simple linear precoding like Regularised Zero Forcing. We evaluate TreeStep for several large MIMO~($16\times16$ and $24\times24$) and massive MIMO~($16\times32$ and $24\times 48$) and demonstrate that TreeStep outperforms the popular polynomial-time VPP algorithm, the Fixed Complexity Sphere Encoder, by achieving the extremely low BER of $10^{-6}$ at a much lower SNR.