亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The study of universal approximation properties (UAP) for neural networks (NN) has a long history. When the network width is unlimited, only a single hidden layer is sufficient for UAP. In contrast, when the depth is unlimited, the width for UAP needs to be not less than the critical width $w^*_{\min}=\max(d_x,d_y)$, where $d_x$ and $d_y$ are the dimensions of the input and output, respectively. Recently, \cite{cai2022achieve} shows that a leaky-ReLU NN with this critical width can achieve UAP for $L^p$ functions on a compact domain $K$, \emph{i.e.,} the UAP for $L^p(K,\mathbb{R}^{d_y})$. This paper examines a uniform UAP for the function class $C(K,\mathbb{R}^{d_y})$ and gives the exact minimum width of the leaky-ReLU NN as $w_{\min}=\max(d_x+1,d_y)+1_{d_y=d_x+1}$, which involves the effects of the output dimensions. To obtain this result, we propose a novel lift-flow-discretization approach that shows that the uniform UAP has a deep connection with topological theory.

相關內容

Variable independence and decomposability are algorithmic techniques for simplifying logical formulas by tearing apart connections between free variables. These techniques were originally proposed to speed up query evaluation in constraint databases, in particular by representing the query as a Boolean combination of formulas with no interconnected variables. They also have many other applications in SMT, string analysis, databases, automata theory and other areas. However, the precise complexity of variable independence and decomposability has been left open especially for the quantifier-free theory of linear real arithmetic (LRA), which is central in database applications. We introduce a novel characterization of formulas admitting decompositions and use it to show that it is coNP-complete to decide variable decomposability over LRA. As a corollary, we obtain that deciding variable independence is in $ \Sigma_2^p $. These results substantially improve the best known double-exponential time algorithms for variable decomposability and independence. In many practical applications, it is crucial to be able to efficiently eliminate connections between variables whenever possible. We design and implement an algorithm for this problem, which is optimal in theory, exponentially faster compared to the current state-of-the-art algorithm and efficient on various microbenchmarks. In particular, our algorithm is the first one to overcome a fundamental barrier between non-discrete and discrete first-order theories. Formulas arising in practice often have few or even no free variables that are perfectly independent. In this case, our algorithm can compute a best-possible approximation of a decomposition, which can be used to optimize database queries by exploiting partial variable independence, which is present in almost every logical formula or database query constraint.

We study the size of a neural network needed to approximate the maximum function over $d$ inputs, in the most basic setting of approximating with respect to the $L_2$ norm, for continuous distributions, for a network that uses ReLU activations. We provide new lower and upper bounds on the width required for approximation across various depths. Our results establish new depth separations between depth 2 and 3, and depth 3 and 5 networks, as well as providing a depth $\mathcal{O}(\log(\log(d)))$ and width $\mathcal{O}(d)$ construction which approximates the maximum function, significantly improving upon the depth requirements of the best previously known bounds for networks with linearly-bounded width. Our depth separation results are facilitated by a new lower bound for depth 2 networks approximating the maximum function over the uniform distribution, assuming an exponential upper bound on the size of the weights. Furthermore, we are able to use this depth 2 lower bound to provide tight bounds on the number of neurons needed to approximate the maximum by a depth 3 network. Our lower bounds are of potentially broad interest as they apply to the widely studied and used \emph{max} function, in contrast to many previous results that base their bounds on specially constructed or pathological functions and distributions.

We study the problem of maintaining a differentially private decaying sum under continual observation. We give a unifying framework and an efficient algorithm for this problem for \emph{any sufficiently smooth} function. Our algorithm is the first differentially private algorithm that does not have a multiplicative error for polynomially-decaying weights. Our algorithm improves on all prior works on differentially private decaying sums under continual observation and recovers exactly the additive error for the special case of continual counting from Henzinger et al. (SODA 2023) as a corollary. Our algorithm is a variant of the factorization mechanism whose error depends on the $\gamma_2$ and $\gamma_F$ norm of the underlying matrix. We give a constructive proof for an almost exact upper bound on the $\gamma_2$ and $\gamma_F$ norm and an almost tight lower bound on the $\gamma_2$ norm for a large class of lower-triangular matrices. This is the first non-trivial lower bound for lower-triangular matrices whose non-zero entries are not all the same. It includes matrices for all continual decaying sums problems, resulting in an upper bound on the additive error of any differentially private decaying sums algorithm under continual observation. We also explore some implications of our result in discrepancy theory and operator algebra. Given the importance of the $\gamma_2$ norm in computer science and the extensive work in mathematics, we believe our result will have further applications.

We consider the classic budgeted maximum weight independent set (BMWIS) problem. The input is a graph $G = (V,E)$, a weight function $w:V \rightarrow \mathbb{R}_{\geq 0}$, a cost function $c:V \rightarrow \mathbb{R}_{\geq 0}$, and a budget $B \in \mathbb{R}_{\geq 0}$. The goal is to find an independent set $S \subseteq V$ in $G$ such that $\sum_{v \in S} c(v) \leq B$, which maximizes the total weight $\sum_{v \in S} w(v)$. Since the problem on general graphs cannot be approximated within ratio $|V|^{1-\varepsilon}$ for any $\varepsilon>0$, BMWIS has attracted significant attention on graph families for which a maximum weight independent set can be computed in polynomial time. Two notable such graph families are bipartite and perfect graphs. BMWIS is known to be NP-hard on both of these graph families; however, the best possible approximation guarantees for these graphs are wide open. In this paper, we give a tight $2$-approximation for BMWIS on perfect graphs and bipartite graphs. In particular, we give We a $(2-\varepsilon)$ lower bound for BMWIS on bipartite graphs, already for the special case where the budget is replaced by a cardinality constraint, based on the Small Set Expansion Hypothesis (SSEH). For the upper bound, we design a $2$-approximation for BMWIS on perfect graphs using a Lagrangian relaxation based technique. Finally, we obtain a tight lower bound for the capacitated maximum weight independent set (CMWIS) problem, the special case of BMWIS where $w(v) = c(v)~\forall v \in V$. We show that CMWIS on bipartite and perfect graphs is unlikely to admit an efficient polynomial-time approximation scheme (EPTAS). Thus, the existing PTAS for CMWIS is essentially the best we can expect.

Let $\Omega = [0,1]^d$ be the unit cube in $\mathbb{R}^d$. We study the problem of how efficiently, in terms of the number of parameters, deep neural networks with the ReLU activation function can approximate functions in the Sobolev spaces $W^s(L_q(\Omega))$ and Besov spaces $B^s_r(L_q(\Omega))$, with error measured in the $L_p(\Omega)$ norm. This problem is important when studying the application of neural networks in a variety of fields, including scientific computing and signal processing, and has previously been completely solved only when $p=q=\infty$. Our contribution is to provide a complete solution for all $1\leq p,q\leq \infty$ and $s > 0$, including asymptotically matching upper and lower bounds. The key technical tool is a novel bit-extraction technique which gives an optimal encoding of sparse vectors. This enables us to obtain sharp upper bounds in the non-linear regime where $p > q$. We also provide a novel method for deriving $L_p$-approximation lower bounds based upon VC-dimension when $p < \infty$. Our results show that very deep ReLU networks significantly outperform classical methods of approximation in terms of the number of parameters, but that this comes at the cost of parameters which are not encodable.

Finding diverse solutions to optimization problems has been of practical interest for several decades, and recently enjoyed increasing attention in research. While submodular optimization has been rigorously studied in many fields, its diverse solutions extension has not. In this study, we consider the most basic variants of submodular optimization, and propose two simple greedy algorithms, which are known to be effective at maximizing monotone submodular functions. These are equipped with parameters that control the trade-off between objective and diversity. Our theoretical contribution shows their approximation guarantees in both objective value and diversity, as functions of their respective parameters. Our experimental investigation with maximum vertex coverage instances demonstrates their empirical differences in terms of objective-diversity trade-offs.

We prove new lower bounds on the modularity of graphs. Specifically, the modularity of a graph $G$ with average degree $\bar d$ is $\Omega(\bar{d}^{-1/2})$, under some mild assumptions on the degree sequence of $G$. The lower bound $\Omega(\bar{d}^{-1/2})$ applies, for instance, to graphs with a power-law degree sequence or a near-regular degree sequence. It has been suggested that the relatively high modularity of the Erd\H{o}s-R\'enyi random graph $G_{n,p}$ stems from the random fluctuations in its edge distribution, however our results imply high modularity for any graph with a degree sequence matching that typically found in $G_{n,p}$. The proof of the new lower bound relies on certain weight-balanced bisections with few cross-edges, which build on ideas of Alon [Combinatorics, Probability and Computing (1997)] and may be of independent interest.

One of the most studied extensions of the famous Traveling Salesperson Problem (TSP) is the {\sc Multiple TSP}: a set of $m\geq 1$ salespersons collectively traverses a set of $n$ cities by $m$ non-trivial tours, to minimize the total length of their tours. This problem can also be considered to be a variant of {\sc Uncapacitated Vehicle Routing} where the objective function is the sum of all tour lengths. When all $m$ tours start from a single common \emph{depot} $v_0$, then the metric {\sc Multiple TSP} can be approximated equally well as the standard metric TSP, as shown by Frieze (1983). The {\sc Multiple TSP} becomes significantly harder to approximate when there is a \emph{set} $D$ of $d \geq 1$ depots that form the starting and end points of the $m$ tours. For this case only a $(2-1/d)$-approximation in polynomial time is known, as well as a $3/2$-approximation for \emph{constant} $d$ which requires a prohibitive run time of $n^{\Theta(d)}$ (Xu and Rodrigues, \emph{INFORMS J. Comput.}, 2015). A recent work of Traub, Vygen and Zenklusen (STOC 2020) gives another approximation algorithm for {\sc Multiple TSP} running in time $n^{\Theta(d)}$ and reducing the problem to approximating TSP. In this paper we overcome the $n^{\Theta(d)}$ time barrier: we give the first efficient approximation algorithm for {\sc Multiple TSP} with a \emph{variable} number $d$ of depots that yields a better-than-2 approximation. Our algorithm runs in time $(1/\varepsilon)^{\mathcal O(d\log d)}\cdot n^{\mathcal O(1)}$, and produces a $(3/2+\varepsilon)$-approximation with constant probability. For the graphic case, we obtain a deterministic $3/2$-approximation in time $2^d\cdot n^{\mathcal O(1)}$.ithm for metric {\sc Multiple TSP} with run time $n^{\Theta(d)}$, which reduces the problem to approximating metric TSP.

In many important graph data processing applications the acquired information includes both node features and observations of the graph topology. Graph neural networks (GNNs) are designed to exploit both sources of evidence but they do not optimally trade-off their utility and integrate them in a manner that is also universal. Here, universality refers to independence on homophily or heterophily graph assumptions. We address these issues by introducing a new Generalized PageRank (GPR) GNN architecture that adaptively learns the GPR weights so as to jointly optimize node feature and topological information extraction, regardless of the extent to which the node labels are homophilic or heterophilic. Learned GPR weights automatically adjust to the node label pattern, irrelevant on the type of initialization, and thereby guarantee excellent learning performance for label patterns that are usually hard to handle. Furthermore, they allow one to avoid feature over-smoothing, a process which renders feature information nondiscriminative, without requiring the network to be shallow. Our accompanying theoretical analysis of the GPR-GNN method is facilitated by novel synthetic benchmark datasets generated by the so-called contextual stochastic block model. We also compare the performance of our GNN architecture with that of several state-of-the-art GNNs on the problem of node-classification, using well-known benchmark homophilic and heterophilic datasets. The results demonstrate that GPR-GNN offers significant performance improvement compared to existing techniques on both synthetic and benchmark data.

Image segmentation is still an open problem especially when intensities of the interested objects are overlapped due to the presence of intensity inhomogeneity (also known as bias field). To segment images with intensity inhomogeneities, a bias correction embedded level set model is proposed where Inhomogeneities are Estimated by Orthogonal Primary Functions (IEOPF). In the proposed model, the smoothly varying bias is estimated by a linear combination of a given set of orthogonal primary functions. An inhomogeneous intensity clustering energy is then defined and membership functions of the clusters described by the level set function are introduced to rewrite the energy as a data term of the proposed model. Similar to popular level set methods, a regularization term and an arc length term are also included to regularize and smooth the level set function, respectively. The proposed model is then extended to multichannel and multiphase patterns to segment colourful images and images with multiple objects, respectively. It has been extensively tested on both synthetic and real images that are widely used in the literature and public BrainWeb and IBSR datasets. Experimental results and comparison with state-of-the-art methods demonstrate that advantages of the proposed model in terms of bias correction and segmentation accuracy.

北京阿比特科技有限公司