Class-agnostic counting (CAC) aims to count objects of interest from a query image given few exemplars. This task is typically addressed by extracting the features of query image and exemplars respectively with (un)shared feature extractors and by matching their feature similarity, leading to an extract-\textit{then}-match paradigm. In this work, we show that CAC can be simplified in an extract-\textit{and}-match manner, particularly using a pretrained and plain vision transformer (ViT) where feature extraction and similarity matching are executed simultaneously within the self-attention. We reveal the rationale of such simplification from a decoupled view of the self-attention and point out that the simplification is only made possible if the query and exemplar tokens are concatenated as input. The resulting model, termed CACViT, simplifies the CAC pipeline and unifies the feature spaces between the query image and exemplars. In addition, we find CACViT naturally encodes background information within self-attention, which helps reduce background disturbance. Further, to compensate the loss of the scale and the order-of-magnitude information due to resizing and normalization in ViT, we present two effective strategies for scale and magnitude embedding. Extensive experiments on the FSC147 and the CARPK datasets show that CACViT significantly outperforms state-of-the-art CAC approaches in both effectiveness (23.60% error reduction) and generalization, which suggests CACViT provides a concise and strong baseline for CAC. Code will be available.
High-quality panoramic images with a Field of View (FoV) of 360-degree are essential for contemporary panoramic computer vision tasks. However, conventional imaging systems come with sophisticated lens designs and heavy optical components. This disqualifies their usage in many mobile and wearable applications where thin and portable, minimalist imaging systems are desired. In this paper, we propose a Panoramic Computational Imaging Engine (PCIE) to address minimalist and high-quality panoramic imaging. With less than three spherical lenses, a Minimalist Panoramic Imaging Prototype (MPIP) is constructed based on the design of the Panoramic Annular Lens (PAL), but with low-quality imaging results due to aberrations and small image plane size. We propose two pipelines, i.e. Aberration Correction (AC) and Super-Resolution and Aberration Correction (SR&AC), to solve the image quality problems of MPIP, with imaging sensors of small and large pixel size, respectively. To provide a universal network for the two pipelines, we leverage the information from the Point Spread Function (PSF) of the optical system and design a PSF-aware Aberration-image Recovery Transformer (PART), in which the self-attention calculation and feature extraction are guided via PSF-aware mechanisms. We train PART on synthetic image pairs from simulation and put forward the PALHQ dataset to fill the gap of real-world high-quality PAL images for low-level vision. A comprehensive variety of experiments on synthetic and real-world benchmarks demonstrates the impressive imaging results of PCIE and the effectiveness of plug-and-play PSF-aware mechanisms. We further deliver heuristic experimental findings for minimalist and high-quality panoramic imaging. Our dataset and code will be available at //github.com/zju-jiangqi/PCIE-PART.
Model compression techniques reduce the computational load and memory consumption of deep neural networks. After the compression operation, e.g. parameter pruning, the model is normally fine-tuned on the original training dataset to recover from the performance drop caused by compression. However, the training data is not always available due to privacy issues or other factors. In this work, we present a data-free fine-tuning approach for pruning the backbone of deep neural networks. In particular, the pruned network backbone is trained with synthetically generated images, and our proposed intermediate supervision to mimic the unpruned backbone's output feature map. Afterwards, the pruned backbone can be combined with the original network head to make predictions. We generate synthetic images by back-propagating gradients to noise images while relying on L1-pruning for the backbone pruning. In our experiments, we show that our approach is task-independent due to pruning only the backbone. By evaluating our approach on 2D human pose estimation, object detection, and image classification, we demonstrate promising performance compared to the unpruned model. Our code is available at //github.com/holzbock/dfbf.
Human-centric perceptions (e.g., pose estimation, human parsing, pedestrian detection, person re-identification, etc.) play a key role in industrial applications of visual models. While specific human-centric tasks have their own relevant semantic aspect to focus on, they also share the same underlying semantic structure of the human body. However, few works have attempted to exploit such homogeneity and design a general-propose model for human-centric tasks. In this work, we revisit a broad range of human-centric tasks and unify them in a minimalist manner. We propose UniHCP, a Unified Model for Human-Centric Perceptions, which unifies a wide range of human-centric tasks in a simplified end-to-end manner with the plain vision transformer architecture. With large-scale joint training on 33 human-centric datasets, UniHCP can outperform strong baselines on several in-domain and downstream tasks by direct evaluation. When adapted to a specific task, UniHCP achieves new SOTAs on a wide range of human-centric tasks, e.g., 69.8 mIoU on CIHP for human parsing, 86.18 mA on PA-100K for attribute prediction, 90.3 mAP on Market1501 for ReID, and 85.8 JI on CrowdHuman for pedestrian detection, performing better than specialized models tailored for each task.
Entity Linking (EL) is a fundamental task for Information Extraction and Knowledge Graphs. The general form of EL (i.e., end-to-end EL) aims to first find mentions in the given input document and then link the mentions to corresponding entities in a specific knowledge base. Recently, the paradigm of retriever-reader promotes the progress of end-to-end EL, benefiting from the advantages of dense entity retrieval and machine reading comprehension. However, the existing study only trains the retriever and the reader separately in a pipeline manner, which ignores the benefit that the interaction between the retriever and the reader can bring to the task. To advance the retriever-reader paradigm to perform more perfectly on end-to-end EL, we propose BEER$^2$, a Bidirectional End-to-End training framework for Retriever and Reader. Through our designed bidirectional end-to-end training, BEER$^2$ guides the retriever and the reader to learn from each other, make progress together, and ultimately improve EL performance. Extensive experiments on benchmarks of multiple domains demonstrate the effectiveness of our proposed BEER$^2$.
Hikers and hillwalkers typically use the gradient in the direction of travel (walking slope) as the main variable in established methods for predicting walking time (via the walking speed) along a route. Research into fell-running has suggested further variables which may improve speed algorithms in this context; the gradient of the terrain (hill slope) and the level of terrain obstruction. Recent improvements in data availability, as well as widespread use of GPS tracking now make it possible to explore these variables in a walking speed model at a sufficient scale to test statistical significance. We tested various established models used to predict walking speed against public GPS data from almost 88,000 km of UK walking / hiking tracks. Tracks were filtered to remove breaks and non-walking sections. A new generalised linear model (GLM) was then used to predict walking speeds. Key differences between the GLM and established rules were that the GLM considered the gradient of the terrain (hill slope) irrespective of walking slope, as well as the terrain type and level of terrain obstruction in off-road travel. All of these factors were shown to be highly significant, and this is supported by a lower root-mean-square-error compared to existing functions. We also observed an increase in RMSE between the GLM and established methods as hill slope increases, further supporting the importance of this variable.
Vision transformers (ViTs) have been trending in image classification tasks due to their promising performance when compared to convolutional neural networks (CNNs). As a result, many researchers have tried to incorporate ViTs in hyperspectral image (HSI) classification tasks. To achieve satisfactory performance, close to that of CNNs, transformers need fewer parameters. ViTs and other similar transformers use an external classification (CLS) token which is randomly initialized and often fails to generalize well, whereas other sources of multimodal datasets, such as light detection and ranging (LiDAR) offer the potential to improve these models by means of a CLS. In this paper, we introduce a new multimodal fusion transformer (MFT) network which comprises a multihead cross patch attention (mCrossPA) for HSI land-cover classification. Our mCrossPA utilizes other sources of complementary information in addition to the HSI in the transformer encoder to achieve better generalization. The concept of tokenization is used to generate CLS and HSI patch tokens, helping to learn a {distinctive representation} in a reduced and hierarchical feature space. Extensive experiments are carried out on {widely used benchmark} datasets {i.e.,} the University of Houston, Trento, University of Southern Mississippi Gulfpark (MUUFL), and Augsburg. We compare the results of the proposed MFT model with other state-of-the-art transformers, classical CNNs, and conventional classifiers models. The superior performance achieved by the proposed model is due to the use of multihead cross patch attention. The source code will be made available publicly at \url{//github.com/AnkurDeria/MFT}.}
This paper considers an ML inspired approach to hypothesis testing known as classifier/classification-accuracy testing ($\mathsf{CAT}$). In $\mathsf{CAT}$, one first trains a classifier by feeding it labeled synthetic samples generated by the null and alternative distributions, which is then used to predict labels of the actual data samples. This method is widely used in practice when the null and alternative are only specified via simulators (as in many scientific experiments). We study goodness-of-fit, two-sample ($\mathsf{TS}$) and likelihood-free hypothesis testing ($\mathsf{LFHT}$), and show that $\mathsf{CAT}$ achieves (near-)minimax optimal sample complexity in both the dependence on the total-variation ($\mathsf{TV}$) separation $\epsilon$ and the probability of error $\delta$ in a variety of non-parametric settings, including discrete distributions, $d$-dimensional distributions with a smooth density, and the Gaussian sequence model. In particular, we close the high probability sample complexity of $\mathsf{LFHT}$ for each class. As another highlight, we recover the minimax optimal complexity of $\mathsf{TS}$ over discrete distributions, which was recently established by Diakonikolas et al. (2021). The corresponding $\mathsf{CAT}$ simply compares empirical frequencies in the first half of the data, and rejects the null when the classification accuracy on the second half is better than random.
Interference between overlapping gird patterns creates moire patterns, degrading the visual quality of an image that captures a screen of a digital display device by an ordinary digital camera. Removing such moire patterns is challenging due to their complex patterns of diverse sizes and color distortions. Existing approaches mainly focus on filtering out in the spatial domain, failing to remove a large-scale moire pattern. In this paper, we propose a novel model called FPANet that learns filters in both frequency and spatial domains, improving the restoration quality by removing various sizes of moire patterns. To further enhance, our model takes multiple consecutive frames, learning to extract frame-invariant content features and outputting better quality temporally consistent images. We demonstrate the effectiveness of our proposed method with a publicly available large-scale dataset, observing that ours outperforms the state-of-the-art approaches, including ESDNet, VDmoire, MBCNN, WDNet, UNet, and DMCNN, in terms of the image and video quality metrics, such as PSNR, SSIM, LPIPS, FVD, and FSIM.
Convolutional neural networks have made significant progresses in edge detection by progressively exploring the context and semantic features. However, local details are gradually suppressed with the enlarging of receptive fields. Recently, vision transformer has shown excellent capability in capturing long-range dependencies. Inspired by this, we propose a novel transformer-based edge detector, \emph{Edge Detection TransformER (EDTER)}, to extract clear and crisp object boundaries and meaningful edges by exploiting the full image context information and detailed local cues simultaneously. EDTER works in two stages. In Stage I, a global transformer encoder is used to capture long-range global context on coarse-grained image patches. Then in Stage II, a local transformer encoder works on fine-grained patches to excavate the short-range local cues. Each transformer encoder is followed by an elaborately designed Bi-directional Multi-Level Aggregation decoder to achieve high-resolution features. Finally, the global context and local cues are combined by a Feature Fusion Module and fed into a decision head for edge prediction. Extensive experiments on BSDS500, NYUDv2, and Multicue demonstrate the superiority of EDTER in comparison with state-of-the-arts.
Pre-trained deep neural network language models such as ELMo, GPT, BERT and XLNet have recently achieved state-of-the-art performance on a variety of language understanding tasks. However, their size makes them impractical for a number of scenarios, especially on mobile and edge devices. In particular, the input word embedding matrix accounts for a significant proportion of the model's memory footprint, due to the large input vocabulary and embedding dimensions. Knowledge distillation techniques have had success at compressing large neural network models, but they are ineffective at yielding student models with vocabularies different from the original teacher models. We introduce a novel knowledge distillation technique for training a student model with a significantly smaller vocabulary as well as lower embedding and hidden state dimensions. Specifically, we employ a dual-training mechanism that trains the teacher and student models simultaneously to obtain optimal word embeddings for the student vocabulary. We combine this approach with learning shared projection matrices that transfer layer-wise knowledge from the teacher model to the student model. Our method is able to compress the BERT_BASE model by more than 60x, with only a minor drop in downstream task metrics, resulting in a language model with a footprint of under 7MB. Experimental results also demonstrate higher compression efficiency and accuracy when compared with other state-of-the-art compression techniques.