亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper investigates a new, practical, but challenging problem named Non-exemplar Online Class-incremental continual Learning (NO-CL), which aims to preserve the discernibility of base classes without buffering data examples and efficiently learn novel classes continuously in a single-pass (i.e., online) data stream. The challenges of this task are mainly two-fold: (1) Both base and novel classes suffer from severe catastrophic forgetting as no previous samples are available for replay. (2) As the online data can only be observed once, there is no way to fully re-train the whole model, e.g., re-calibrate the decision boundaries via prototype alignment or feature distillation. In this paper, we propose a novel Dual-prototype Self-augment and Refinement method (DSR) for NO-CL problem, which consists of two strategies: 1) Dual class prototypes: vanilla and high-dimensional prototypes are exploited to utilize the pre-trained information and obtain robust quasi-orthogonal representations rather than example buffers for both privacy preservation and memory reduction. 2) Self-augment and refinement: Instead of updating the whole network, we optimize high-dimensional prototypes alternatively with the extra projection module based on self-augment vanilla prototypes, through a bi-level optimization problem. Extensive experiments demonstrate the effectiveness and superiority of the proposed DSR in NO-CL.

相關內容

讓 iOS 8 和 OS X Yosemite 無縫切換的一個新特性。 > Apple products have always been designed to work together beautifully. But now they may really surprise you. With iOS 8 and OS X Yosemite, you’ll be able to do more wonderful things than ever before.

Source:

This paper extends the FAIR (Findable, Accessible, Interoperable, Reusable) guidelines to provide criteria for assessing if software is Open Source. By adding 'USE' (User-Centered, Sustainable, Equitable), software development can adhere to open source best practice by incorporating user-input early on, ensuring front-end designs are accessible to all possible stakeholders, and planning long-term sustainability alongside software design. The FAIR-USE4OS guidelines will allow funders and researchers to more effectively evaluate and plan Open Source software projects. There is good evidence of funders increasingly mandating that all funded research software is open-source; however, even under the FAIR guidelines, this could simply mean software released on GitHub with a Zenodo DOI. By employing the FAIR-USE4OS guidelines, best practice can be demonstrated from the very beginning of the design process and the software has the greatest chance of success by being truly 'Open Source'.

This paper aims to analyze errors in the implementation of the Physics-Informed Neural Network (PINN) for solving the Allen--Cahn (AC) and Cahn--Hilliard (CH) partial differential equations (PDEs). The accuracy of PINN is still challenged when dealing with strongly non-linear and higher-order time-varying PDEs. To address this issue, we introduce a stable and bounded self-adaptive weighting scheme known as Residuals-RAE, which ensures fair training and effectively captures the solution. By incorporating this new training loss function, we conduct numerical experiments on 1D and 2D AC and CH systems to validate our theoretical findings. Our theoretical analysis demonstrates that feedforward neural networks with two hidden layers and tanh activation function effectively bound the PINN approximation errors for the solution field, temporal derivative, and nonlinear term of the AC and CH equations by the training loss and number of collocation points.

We present UNSEE: Unsupervised Non-Contrastive Sentence Embeddings, a novel approach that outperforms SimCSE in the Massive Text Embedding benchmark. Our exploration begins by addressing the challenge of representation collapse, a phenomenon observed when contrastive objectives in SimCSE are replaced with non-contrastive objectives. To counter this issue, we propose a straightforward solution known as the target network, effectively mitigating representation collapse. The introduction of the target network allows us to leverage non-contrastive objectives, maintaining training stability while achieving performance improvements comparable to contrastive objectives. Our method has achieved peak performance in non-contrastive sentence embeddings through meticulous fine-tuning and optimization. This comprehensive effort has yielded superior sentence representation models, showcasing the effectiveness of our approach.

We propose a hierarchical architecture designed for scalable real-time Model Predictive Control (MPC) in complex, multi-modal traffic scenarios. This architecture comprises two key components: 1) RAID-Net, a novel attention-based Recurrent Neural Network that predicts relevant interactions along the MPC prediction horizon between the autonomous vehicle and the surrounding vehicles using Lagrangian duality, and 2) a reduced Stochastic MPC problem that eliminates irrelevant collision avoidance constraints, enhancing computational efficiency. Our approach is demonstrated in a simulated traffic intersection with interactive surrounding vehicles, showcasing a 12x speed-up in solving the motion planning problem. A video demonstrating the proposed architecture in multiple complex traffic scenarios can be found here: //youtu.be/-TcMeolCLWc

The new paradigm of finetuning-as-a-service introduces a new attack surface for Large Language Models (LLMs): a few harmful data uploaded by users can easily trick the finetuning to produce an alignment-broken model. We conduct an empirical analysis and uncover a \textit{harmful embedding drift} phenomenon, showing a probable cause of the alignment-broken effect. Inspired by our findings, we propose Vaccine, a perturbation-aware alignment technique to mitigate the security risk of users finetuning. The core idea of Vaccine is to produce invariant hidden embeddings by progressively adding crafted perturbation to them in the alignment phase. This enables the embeddings to withstand harmful perturbation from un-sanitized user data in the finetuning phase. Our results on open source mainstream LLMs (e.g., Llama2, Opt, Vicuna) demonstrate that Vaccine can boost the robustness of alignment against harmful prompts induced embedding drift while reserving reasoning ability towards benign prompts. Our code is available at \url{//github.com/git-disl/Vaccine}.

Current IR evaluation is based on relevance judgments, created either manually or automatically, with decisions outsourced to Large Language Models (LLMs). We offer an alternative paradigm, that never relies on relevance judgments in any form. Instead, a text is defined as relevant if it contains information that enables the answering of key questions. We use this idea to design the EXAM Answerability Metric to evaluate information retrieval/generation systems for their ability to provide topically relevant information. We envision the role of a human judge to edit and define an exam question bank that will test for the presence of relevant information in text. We support this step by generating an initial set of exam questions. In the next phase, an LLM-based question answering system will automatically grade system responses by tracking which exam questions are answerable with which system responses. We propose two evaluation measures, the recall-oriented EXAM Cover metric, and the precision-oriented EXAM Qrels metric, the latter which can be implemented with trec_eval. This paradigm not only allows for the expansion of the exam question set post-hoc but also facilitates the ongoing evaluation of future information systems, whether they focus on retrieval, generation, or both.

To retrieve more relevant, appropriate and useful documents given a query, finding clues about that query through the text is crucial. Recent deep learning models regard the task as a term-level matching problem, which seeks exact or similar query patterns in the document. However, we argue that they are inherently based on local interactions and do not generalise to ubiquitous, non-consecutive contextual relationships.In this work, we propose a novel relevance matching model based on graph neural networks to leverage the document-level word relationships for ad-hoc retrieval. In addition to the local interactions, we explicitly incorporate all contexts of a term through the graph-of-word text format. Matching patterns can be revealed accordingly to provide a more accurate relevance score. Our approach significantly outperforms strong baselines on two ad-hoc benchmarks. We also experimentally compare our model with BERT and show our ad-vantages on long documents.

This paper explores meta-learning in sequential recommendation to alleviate the item cold-start problem. Sequential recommendation aims to capture user's dynamic preferences based on historical behavior sequences and acts as a key component of most online recommendation scenarios. However, most previous methods have trouble recommending cold-start items, which are prevalent in those scenarios. As there is generally no side information in the setting of sequential recommendation task, previous cold-start methods could not be applied when only user-item interactions are available. Thus, we propose a Meta-learning-based Cold-Start Sequential Recommendation Framework, namely Mecos, to mitigate the item cold-start problem in sequential recommendation. This task is non-trivial as it targets at an important problem in a novel and challenging context. Mecos effectively extracts user preference from limited interactions and learns to match the target cold-start item with the potential user. Besides, our framework can be painlessly integrated with neural network-based models. Extensive experiments conducted on three real-world datasets verify the superiority of Mecos, with the average improvement up to 99%, 91%, and 70% in HR@10 over state-of-the-art baseline methods.

In this paper, we proposed to apply meta learning approach for low-resource automatic speech recognition (ASR). We formulated ASR for different languages as different tasks, and meta-learned the initialization parameters from many pretraining languages to achieve fast adaptation on unseen target language, via recently proposed model-agnostic meta learning algorithm (MAML). We evaluated the proposed approach using six languages as pretraining tasks and four languages as target tasks. Preliminary results showed that the proposed method, MetaASR, significantly outperforms the state-of-the-art multitask pretraining approach on all target languages with different combinations of pretraining languages. In addition, since MAML's model-agnostic property, this paper also opens new research direction of applying meta learning to more speech-related applications.

Within the rapidly developing Internet of Things (IoT), numerous and diverse physical devices, Edge devices, Cloud infrastructure, and their quality of service requirements (QoS), need to be represented within a unified specification in order to enable rapid IoT application development, monitoring, and dynamic reconfiguration. But heterogeneities among different configuration knowledge representation models pose limitations for acquisition, discovery and curation of configuration knowledge for coordinated IoT applications. This paper proposes a unified data model to represent IoT resource configuration knowledge artifacts. It also proposes IoT-CANE (Context-Aware recommendatioN systEm) to facilitate incremental knowledge acquisition and declarative context driven knowledge recommendation.

北京阿比特科技有限公司