亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper extends the FAIR (Findable, Accessible, Interoperable, Reusable) guidelines to provide criteria for assessing if software is Open Source. By adding 'USE' (User-Centered, Sustainable, Equitable), software development can adhere to open source best practice by incorporating user-input early on, ensuring front-end designs are accessible to all possible stakeholders, and planning long-term sustainability alongside software design. The FAIR-USE4OS guidelines will allow funders and researchers to more effectively evaluate and plan Open Source software projects. There is good evidence of funders increasingly mandating that all funded research software is open-source; however, even under the FAIR guidelines, this could simply mean software released on GitHub with a Zenodo DOI. By employing the FAIR-USE4OS guidelines, best practice can be demonstrated from the very beginning of the design process and the software has the greatest chance of success by being truly 'Open Source'.

相關內容

Recent research on Simultaneous Localization and Mapping (SLAM) based on implicit representation has shown promising results in indoor environments. However, there are still some challenges: the limited scene representation capability of implicit encodings, the uncertainty in the rendering process from implicit representations, and the disruption of consistency by dynamic objects. To address these challenges, we propose a real-time dynamic visual SLAM system based on local-global fusion neural implicit representation, named DVN-SLAM. To improve the scene representation capability, we introduce a local-global fusion neural implicit representation that enables the construction of an implicit map while considering both global structure and local details. To tackle uncertainties arising from the rendering process, we design an information concentration loss for optimization, aiming to concentrate scene information on object surfaces. The proposed DVN-SLAM achieves competitive performance in localization and mapping across multiple datasets. More importantly, DVN-SLAM demonstrates robustness in dynamic scenes, a trait that sets it apart from other NeRF-based methods.

Recent advancements in Graph Neural Networks (GNN) have facilitated their widespread adoption in various applications, including recommendation systems. GNNs have proven to be effective in addressing the challenges posed by recommendation systems by efficiently modeling graphs in which nodes represent users or items and edges denote preference relationships. However, current GNN techniques represent nodes by means of a single static vector, which may inadequately capture the intricate complexities of users and items. To overcome these limitations, we propose a solution integrating a cutting-edge model inspired by category theory: Sheaf4Rec. Unlike single vector representations, Sheaf Neural Networks and their corresponding Laplacians represent each node (and edge) using a vector space. Our approach takes advantage from this theory and results in a more comprehensive representation that can be effectively exploited during inference, providing a versatile method applicable to a wide range of graph-related tasks and demonstrating unparalleled performance. Our proposed model exhibits a noteworthy relative improvement of up to 8.53% on F1-Score@10 and an impressive increase of up to 11.29% on NDCG@10, outperforming existing state-of-the-art models such as Neural Graph Collaborative Filtering (NGCF), KGTORe and other recently developed GNN-based models. In addition to its superior predictive capabilities, Sheaf4Rec shows remarkable improvements in terms of efficiency: we observe substantial runtime improvements ranging from 2.5% up to 37% when compared to other GNN-based competitor models, indicating a more efficient way of handling information while achieving better performance. Code is available at //github.com/antoniopurificato/Sheaf4Rec.

In this paper, we explore the capabilities of LLMs in capturing lexical-semantic knowledge from WordNet on the example of the LLaMA-2-7b model and test it on multiple lexical semantic tasks. As the outcome of our experiments, we present TaxoLLaMA, the everything-in-one model, lightweight due to 4-bit quantization and LoRA. It achieves 11 SotA results, 4 top-2 results out of 16 tasks for the Taxonomy Enrichment, Hypernym Discovery, Taxonomy Construction, and Lexical Entailment tasks. Moreover, it demonstrates very strong zero-shot performance on Lexical Entailment and Taxonomy Construction with no fine-tuning. We also explore its hidden multilingual and domain adaptation capabilities with a little tuning or few-shot learning. All datasets, code, and model are available online at //github.com/VityaVitalich/TaxoLLaMA

This paper introduces FlexNN, a Flexible Neural Network accelerator, which adopts agile design principles to enable versatile dataflows, enhancing energy efficiency. Unlike conventional convolutional neural network accelerator architectures that adhere to fixed dataflows (such as input, weight, output, or row stationary) for transferring activations and weights between storage and compute units, our design revolutionizes by enabling adaptable dataflows of any type through software configurable descriptors. Considering that data movement costs considerably outweigh compute costs from an energy perspective, the flexibility in dataflow allows us to optimize the movement per layer for minimal data transfer and energy consumption, a capability unattainable in fixed dataflow architectures. To further enhance throughput and reduce energy consumption in the FlexNN architecture, we propose a novel sparsity-based acceleration logic that utilizes fine-grained sparsity in both the activation and weight tensors to bypass redundant computations, thus optimizing the convolution engine within the hardware accelerator. Extensive experimental results underscore a significant enhancement in the performance and energy efficiency of FlexNN relative to existing DNN accelerators.

This paper adapts a general dataset representation technique to produce robust Visual Place Recognition (VPR) descriptors, crucial to enable real-world mobile robot localisation. Two parallel lines of work on VPR have shown, on one side, that general-purpose off-the-shelf feature representations can provide robustness to domain shifts, and, on the other, that fused information from sequences of images improves performance. In our recent work on measuring domain gaps between image datasets, we proposed a Visual Distribution of Neuron Activations (VDNA) representation to represent datasets of images. This representation can naturally handle image sequences and provides a general and granular feature representation derived from a general-purpose model. Moreover, our representation is based on tracking neuron activation values over the list of images to represent and is not limited to a particular neural network layer, therefore having access to high- and low-level concepts. This work shows how VDNAs can be used for VPR by learning a very lightweight and simple encoder to generate task-specific descriptors. Our experiments show that our representation can allow for better robustness than current solutions to serious domain shifts away from the training data distribution, such as to indoor environments and aerial imagery.

This paper explores the utilization of LLMs for data preprocessing (DP), a crucial step in the data mining pipeline that transforms raw data into a clean format conducive to easy processing. Whereas the use of LLMs has sparked interest in devising universal solutions to DP, recent initiatives in this domain typically rely on GPT APIs, raising inevitable data breach concerns. Unlike these approaches, we consider instruction-tuning local LLMs (7 - 13B models) as universal DP ask solver. We select a collection of datasets across four representative DP tasks and construct instruction-tuning data using serialization and knowledge injection techniques tailored to DP. As such, the instruction-tuned LLMs empower users to manually craft instructions for DP. Meanwhile, they can operate on a local, single, and low-priced GPU, ensuring data security and enabling further tuning. Our experiments show that our dataset constructed for DP instruction tuning, namely Jellyfish, effectively enhances LLMs' DP performances and barely compromises their abilities in NLP tasks. By tuning Mistral-7B and OpenOrca-Platypus2-13B with Jellyfish, the models deliver competitiveness compared to state-of-the-art DP methods and strong generalizability to unseen tasks. The models' performance rivals that of GPT series models, and the interpretation offers enhanced reasoning capabilities compared to GPT-3.5. The 7B and 13B Jellyfish models are available at Hugging Face: //huggingface.co/NECOUDBFM/Jellyfish-7B //huggingface.co/NECOUDBFM/Jellyfish-13B

This paper introduces OccFusion, a straightforward and efficient sensor fusion framework for predicting 3D occupancy. A comprehensive understanding of 3D scenes is crucial in autonomous driving, and recent models for 3D semantic occupancy prediction have successfully addressed the challenge of describing real-world objects with varied shapes and classes. However, existing methods for 3D occupancy prediction heavily rely on surround-view camera images, making them susceptible to changes in lighting and weather conditions. By integrating features from additional sensors, such as lidar and surround view radars, our framework enhances the accuracy and robustness of occupancy prediction, resulting in top-tier performance on the nuScenes benchmark. Furthermore, extensive experiments conducted on the nuScenes dataset, including challenging night and rainy scenarios, confirm the superior performance of our sensor fusion strategy across various perception ranges. The code for this framework will be made available at //github.com/DanielMing123/OCCFusion.

Routine inspections for critical infrastructures such as bridges are required in most jurisdictions worldwide. Such routine inspections are largely visual in nature, which are qualitative, subjective, and not repeatable. Although robotic infrastructure inspections address such limitations, they cannot replace the superior ability of experts to make decisions in complex situations, thus making human-robot interaction systems a promising technology. This study presents a novel gaze-based human-robot interaction system, designed to augment the visual inspection performance through mixed reality. Through holograms from a mixed reality device, gaze can be utilized effectively to estimate the properties of the defect in real-time. Additionally, inspectors can monitor the inspection progress online, which enhances the speed of the entire inspection process. Limited controlled experiments demonstrate its effectiveness across various users and defect types. To our knowledge, this is the first demonstration of the real-time application of eye gaze in civil infrastructure inspections.

This paper explores meta-learning in sequential recommendation to alleviate the item cold-start problem. Sequential recommendation aims to capture user's dynamic preferences based on historical behavior sequences and acts as a key component of most online recommendation scenarios. However, most previous methods have trouble recommending cold-start items, which are prevalent in those scenarios. As there is generally no side information in the setting of sequential recommendation task, previous cold-start methods could not be applied when only user-item interactions are available. Thus, we propose a Meta-learning-based Cold-Start Sequential Recommendation Framework, namely Mecos, to mitigate the item cold-start problem in sequential recommendation. This task is non-trivial as it targets at an important problem in a novel and challenging context. Mecos effectively extracts user preference from limited interactions and learns to match the target cold-start item with the potential user. Besides, our framework can be painlessly integrated with neural network-based models. Extensive experiments conducted on three real-world datasets verify the superiority of Mecos, with the average improvement up to 99%, 91%, and 70% in HR@10 over state-of-the-art baseline methods.

Object detectors usually achieve promising results with the supervision of complete instance annotations. However, their performance is far from satisfactory with sparse instance annotations. Most existing methods for sparsely annotated object detection either re-weight the loss of hard negative samples or convert the unlabeled instances into ignored regions to reduce the interference of false negatives. We argue that these strategies are insufficient since they can at most alleviate the negative effect caused by missing annotations. In this paper, we propose a simple but effective mechanism, called Co-mining, for sparsely annotated object detection. In our Co-mining, two branches of a Siamese network predict the pseudo-label sets for each other. To enhance multi-view learning and better mine unlabeled instances, the original image and corresponding augmented image are used as the inputs of two branches of the Siamese network, respectively. Co-mining can serve as a general training mechanism applied to most of modern object detectors. Experiments are performed on MS COCO dataset with three different sparsely annotated settings using two typical frameworks: anchor-based detector RetinaNet and anchor-free detector FCOS. Experimental results show that our Co-mining with RetinaNet achieves 1.4%~2.1% improvements compared with different baselines and surpasses existing methods under the same sparsely annotated setting.

北京阿比特科技有限公司