亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Theories and tools based on multiparty session types offer correctness guarantees for concurrent programs that communicate using message-passing. These guarantees usually come at the cost of an intrinsically top-down approach, which requires the communication behaviour of the entire program to be specified as a global type. This paper introduces kmclib: an OCaml library that supports the development of correct message-passing programs without having to write any types. The library utilises the meta-programming facilities of OCaml to automatically infer the session types of concurrent programs and verify their compatibility (k-MC). Well-typed programs, written with kmclib, do not lead to communication errors and cannot get stuck.

相關內容

Automator是蘋果公司為他們的Mac OS X系統開發的一款軟件。 只要通過點擊拖拽鼠標等操作就可以將一系列動作組合成一個工作流,從而幫助你自動的(可重復的)完成一些復雜的工作。Automator還能橫跨很多不同種類的程序,包括:查找器、Safari網絡瀏覽器、iCal、地址簿或者其他的一些程序。它還能和一些第三方的程序一起工作,如微軟的Office、Adobe公司的Photoshop或者Pixelmator等。

We consider the problem of finding a compromise between the opinions of a group of individuals on a number of mutually independent, binary topics. In this paper, we quantify the loss in representativeness that results from requiring the outcome to have majority support, in other words, the "price of majority support". Each individual is assumed to support an outcome if they agree with the outcome on at least as many topics as they disagree on. Our results can also be seen as quantifying Anscombes paradox which states that topic-wise majority outcome may not be supported by a majority. To measure the representativeness of an outcome, we consider two metrics. First, we look for an outcome that agrees with a majority on as many topics as possible. We prove that the maximum number such that there is guaranteed to exist an outcome that agrees with a majority on this number of topics and has majority support, equals $\ceil{(t+1)/2}$ where $t$ is the total number of topics. Second, we count the number of times a voter opinion on a topic matches the outcome on that topic. The goal is to find the outcome with majority support with the largest number of matches. We consider the ratio between this number and the number of matches of the overall best outcome which may not have majority support. We try to find the maximum ratio such that an outcome with majority support and this ratio of matches compared to the overall best is guaranteed to exist. For 3 topics, we show this ratio to be $5/6\approx 0.83$. In general, we prove an upper bound that comes arbitrarily close to $2\sqrt{6}-4\approx 0.90$ as $t$ tends to infinity. Furthermore, we numerically compute a better upper and a non-matching lower bound in the relevant range for $t$.

We consider the design and analysis of multi-factor experiments using fractional factorial and incomplete designs within the potential outcome framework. These designs are particularly useful when limited resources make running a full factorial design infeasible. We connect our design-based methods to standard regression methods. We further motivate the usefulness of these designs in multi-factor observational studies, where certain treatment combinations may be so rare that there are no measured outcomes in the observed data corresponding to them. Therefore, conceptualizing a hypothetical fractional factorial experiment instead of a full factorial experiment allows for appropriate analysis in those settings. We illustrate our approach using biomedical data from the 2003-2004 cycle of the National Health and Nutrition Examination Survey to examine the effects of four common pesticides on body mass index.

Non-volatile memory (NVM), also known as persistent memory, is an emerging paradigm for memory that preserves its contents even after power loss. NVM is widely expected to become ubiquitous, and hardware architectures are already providing support for NVM programming. This has stimulated interest in the design of novel concepts ensuring correctness of concurrent programming abstractions in the face of persistency and in the development of associated verification approaches. Software transactional memory (STM) is a key programming abstraction that supports concurrent access to shared state. In a fashion similar to linearizability as the correctness condition for concurrent data structures, there is an established notion of correctness for STMs known as opacity. We have recently proposed durable opacity as the natural extension of opacity to a setting with non-volatile memory. Together with this novel correctness condition, we designed a verification technique based on refinement. In this paper, we extend this work in two directions. First, we develop a durably opaque version of NOrec (no ownership records), an existing STM algorithm proven to be opaque. Second, we modularise our existing verification approach by separating the proof of durability of memory accesses from the proof of opacity. For NOrec, this allows us to re-use an existing opacity proof and complement it with a proof of the durability of accesses to shared state.

We study vulnerability of a uniformly distributed random graph to an attack by an adversary who aims for a global change of the distribution while being able to make only a local change in the graph. We call a graph property $A$ anti-stochastic if the probability that a random graph $G$ satisfies $A$ is small but, with high probability, there is a small perturbation transforming $G$ into a graph satisfying $A$. While for labeled graphs such properties are easy to obtain from binary covering codes, the existence of anti-stochastic properties for unlabeled graphs is not so evident. If an admissible perturbation is either the addition or the deletion of one edge, we exhibit an anti-stochastic property that is satisfied by a random unlabeled graph of order $n$ with probability $(2+o(1))/n^2$, which is as small as possible. We also express another anti-stochastic property in terms of the degree sequence of a graph. This property has probability $(2+o(1))/(n\ln n)$, which is optimal up to factor of 2.

Iterative distributed optimization algorithms involve multiple agents that communicate with each other, over time, in order to minimize/maximize a global objective. In the presence of unreliable communication networks, the Age-of-Information (AoI), which measures the freshness of data received, may be large and hence hinder algorithmic convergence. In this paper, we study the convergence of general distributed gradient-based optimization algorithms in the presence of communication that neither happens periodically nor at stochastically independent points in time. We show that convergence is guaranteed provided the random variables associated with the AoI processes are stochastically dominated by a random variable with finite first moment. This improves on previous requirements of boundedness of more than the first moment. We then introduce stochastically strongly connected (SSC) networks, a new stochastic form of strong connectedness for time-varying networks. We show: If for any $p \ge0$ the processes that describe the success of communication between agents in a SSC network are $\alpha$-mixing with $n^{p-1}\alpha(n)$ summable, then the associated AoI processes are stochastically dominated by a random variable with finite $p$-th moment. In combination with our first contribution, this implies that distributed stochastic gradient descend converges in the presence of AoI, if $\alpha(n)$ is summable.

Our motivation stems from current medical research aiming at personalized treatment using a molecular-based approach. The broad goal is to develop a more precise and targeted decision making process, relative to traditional treatments based primarily on clinical diagnoses. Specifically, we consider patients affected by Acute Myeloid Leukemia (AML), an hematological cancer characterized by uncontrolled proliferation of hematopoietic stem cells in the bone marrow. Because AML responds poorly to chemoterapeutic treatments, the development of targeted therapies is essential to improve patients' prospects. In particular, the dataset we analyze contains the levels of proteins involved in cell cycle regulation and linked to the progression of the disease. We analyse treatment effects within a causal framework represented by a Directed Acyclic Graph (DAG) model, whose vertices are the protein levels in the network. A major obstacle in implementing the above program is however represented by individual heterogeneity. We address this issue through a Dirichlet Process (DP) mixture of Gaussian DAG-models where both the graphical structure as well as the allied model parameters are regarded as uncertain. Our procedure determines a clustering structure of the units reflecting the underlying heterogeneity, and produces subject-specific estimates of causal effects based on Bayesian model averaging. With reference to the AML dataset, we identify different effects of protein regulation among individuals; moreover, our method clusters patients into groups that exhibit only mild similarities with traditional categories based on morphological features.

Active inference is a unifying theory for perception and action resting upon the idea that the brain maintains an internal model of the world by minimizing free energy. From a behavioral perspective, active inference agents can be seen as self-evidencing beings that act to fulfill their optimistic predictions, namely preferred outcomes or goals. In contrast, reinforcement learning requires human-designed rewards to accomplish any desired outcome. Although active inference could provide a more natural self-supervised objective for control, its applicability has been limited because of the shortcomings in scaling the approach to complex environments. In this work, we propose a contrastive objective for active inference that strongly reduces the computational burden in learning the agent's generative model and planning future actions. Our method performs notably better than likelihood-based active inference in image-based tasks, while also being computationally cheaper and easier to train. We compare to reinforcement learning agents that have access to human-designed reward functions, showing that our approach closely matches their performance. Finally, we also show that contrastive methods perform significantly better in the case of distractors in the environment and that our method is able to generalize goals to variations in the background.

Optimizing ranking systems based on user interactions is a well-studied problem. State-of-the-art methods for optimizing ranking systems based on user interactions are divided into online approaches - that learn by directly interacting with users - and counterfactual approaches - that learn from historical interactions. Existing online methods are hindered without online interventions and thus should not be applied counterfactually. Conversely, counterfactual methods cannot directly benefit from online interventions. We propose a novel intervention-aware estimator for both counterfactual and online Learning to Rank (LTR). With the introduction of the intervention-aware estimator, we aim to bridge the online/counterfactual LTR division as it is shown to be highly effective in both online and counterfactual scenarios. The estimator corrects for the effect of position bias, trust bias, and item-selection bias by using corrections based on the behavior of the logging policy and on online interventions: changes to the logging policy made during the gathering of click data. Our experimental results, conducted in a semi-synthetic experimental setup, show that, unlike existing counterfactual LTR methods, the intervention-aware estimator can greatly benefit from online interventions.

Inferencing with network data necessitates the mapping of its nodes into a vector space, where the relationships are preserved. However, with multi-layered networks, where multiple types of relationships exist for the same set of nodes, it is crucial to exploit the information shared between layers, in addition to the distinct aspects of each layer. In this paper, we propose a novel approach that first obtains node embeddings in all layers jointly via DeepWalk on a \textit{supra} graph, which allows interactions between layers, and then fine-tunes the embeddings to encourage cohesive structure in the latent space. With empirical studies in node classification, link prediction and multi-layered community detection, we show that the proposed approach outperforms existing single- and multi-layered network embedding algorithms on several benchmarks. In addition to effectively scaling to a large number of layers (tested up to $37$), our approach consistently produces highly modular community structure, even when compared to methods that directly optimize for the modularity function.

This paper addresses the problem of formally verifying desirable properties of neural networks, i.e., obtaining provable guarantees that neural networks satisfy specifications relating their inputs and outputs (robustness to bounded norm adversarial perturbations, for example). Most previous work on this topic was limited in its applicability by the size of the network, network architecture and the complexity of properties to be verified. In contrast, our framework applies to a general class of activation functions and specifications on neural network inputs and outputs. We formulate verification as an optimization problem (seeking to find the largest violation of the specification) and solve a Lagrangian relaxation of the optimization problem to obtain an upper bound on the worst case violation of the specification being verified. Our approach is anytime i.e. it can be stopped at any time and a valid bound on the maximum violation can be obtained. We develop specialized verification algorithms with provable tightness guarantees under special assumptions and demonstrate the practical significance of our general verification approach on a variety of verification tasks.

北京阿比特科技有限公司