Intentional and accidental harms arising from the use of AI have impacted the health, safety and rights of individuals. While regulatory frameworks are being developed, there remains a lack of consensus on methods necessary to deliver safe AI. The potential for explainable AI (XAI) to contribute to the effectiveness of the regulation of AI is being increasingly examined. Regulation must include methods to ensure compliance on an ongoing basis, though there is an absence of practical proposals on how to achieve this. For XAI to be successfully incorporated into a regulatory system, the individuals who are engaged in interpreting/explaining the model to stakeholders should be sufficiently qualified for the role. Statutory professionals are prevalent in domains in which harm can be done to the health, safety and rights of individuals. The most obvious examples are doctors, engineers and lawyers. Those professionals are required to exercise skill and judgement and to defend their decision making process in the event of harm occurring. We propose that a statutory profession framework be introduced as a necessary part of the AI regulatory framework for compliance and monitoring purposes. We will refer to this new statutory professional as an AI Architect (AIA). This AIA would be responsible to ensure the risk of harm is minimised and accountable in the event that harms occur. The AIA would also be relied on to provide appropriate interpretations/explanations of XAI models to stakeholders. Further, in order to satisfy themselves that the models have been developed in a satisfactory manner, the AIA would require models to have appropriate transparency. Therefore it is likely that the introduction of an AIA system would lead to an increase in the use of XAI to enable AIA to discharge their professional obligations.
We investigate trade-offs in static and dynamic evaluation of hierarchical queries with arbitrary free variables. In the static setting, the trade-off is between the time to partially compute the query result and the delay needed to enumerate its tuples. In the dynamic setting, we additionally consider the time needed to update the query result under single-tuple inserts or deletes to the database. Our approach observes the degree of values in the database and uses different computation and maintenance strategies for high-degree (heavy) and low-degree (light) values. For the latter it partially computes the result, while for the former it computes enough information to allow for on-the-fly enumeration. We define the preprocessing time, the update time, and the enumeration delay as functions of the light/heavy threshold. By appropriately choosing this threshold, our approach recovers a number of prior results when restricted to hierarchical queries. We show that for a restricted class of hierarchical queries, our approach achieves worst-case optimal update time and enumeration delay conditioned on the Online Matrix-Vector Multiplication Conjecture.
Although AI systems have been applied in various fields and achieved impressive performance, their safety and reliability are still a big concern. This is especially important for safety-critical tasks. One shared characteristic of these critical tasks is their risk sensitivity, where small mistakes can cause big consequences and even endanger life. There are several factors that could be guidelines for the successful deployment of AI systems in sensitive tasks: (i) failure detection and out-of-distribution (OOD) detection; (ii) overfitting identification; (iii) uncertainty quantification for predictions; (iv) robustness to data perturbations. These factors are also challenges of current AI systems, which are major blocks for building safe and reliable AI. Specifically, the current AI algorithms are unable to identify common causes for failure detection. Furthermore, additional techniques are required to quantify the quality of predictions. All these contribute to inaccurate uncertainty quantification, which lowers trust in predictions. Hence obtaining accurate model uncertainty quantification and its further improvement are challenging. To address these issues, many techniques have been proposed, such as regularization methods and learning strategies. As vision and language are the most typical data type and have many open source benchmark datasets, this thesis will focus on vision-language data processing for tasks like classification, image captioning, and vision question answering. In this thesis, we aim to build a safeguard by further developing current techniques to ensure the accurate model uncertainty for safety-critical tasks.
In freeze drying, thermal radiation has a significant effect on the drying process of vials located near the corner and edge of the trays, resulting in non-uniformity of the products. Understanding and being able to predict the impact of thermal radiation are therefore critical to accurate determination of the drying process endpoint given the variation in heat transfer of each vial. This article presents a new mechanistic model that describes complex thermal radiation during primary drying in conventional, microwave-assisted, and hybrid freeze drying. Modeling of thermal radiation employs the diffuse gray surface model and radiation network approach, which systematically and accurately incorporates simultaneous radiation exchange between every surface including the chamber wall and vials, allowing the framework to be seamlessly applied for analyzing various freeze-dryer designs. Model validation with data from the literature shows accurate prediction of the drying times for all vials, including inner, edge, and corner vials. The validated model is demonstrated for thermal radiation analysis and parametric studies to guide the design and optimization of freeze dryers.
Inverse propensity weighting (IPW) is a popular method for estimating treatment effects from observational data. However, its correctness relies on the untestable (and frequently implausible) assumption that all confounders have been measured. This paper introduces a robust sensitivity analysis for IPW that estimates the range of treatment effects compatible with a given amount of unobserved confounding. The estimated range converges to the narrowest possible interval (under the given assumptions) that must contain the true treatment effect. Our proposal is a refinement of the influential sensitivity analysis by Zhao, Small, and Bhattacharya (2019), which we show gives bounds that are too wide even asymptotically. This analysis is based on new partial identification results for Tan (2006)'s marginal sensitivity model.
Electrocardiogram (ECG) is a widely used diagnostic tool for detecting heart conditions. Rare cardiac diseases may be underdiagnosed using traditional ECG analysis, considering that no training dataset can exhaust all possible cardiac disorders. This paper proposes using anomaly detection to identify any unhealthy status, with normal ECGs solely for training. However, detecting anomalies in ECG can be challenging due to significant inter-individual differences and anomalies present in both global rhythm and local morphology. To address this challenge, this paper introduces a novel multi-scale cross-restoration framework for ECG anomaly detection and localization that considers both local and global ECG characteristics. The proposed framework employs a two-branch autoencoder to facilitate multi-scale feature learning through a masking and restoration process, with one branch focusing on global features from the entire ECG and the other on local features from heartbeat-level details, mimicking the diagnostic process of cardiologists. Anomalies are identified by their high restoration errors. To evaluate the performance on a large number of individuals, this paper introduces a new challenging benchmark with signal point-level ground truths annotated by experienced cardiologists. The proposed method demonstrates state-of-the-art performance on this benchmark and two other well-known ECG datasets. The benchmark dataset and source code are available at: \url{//github.com/MediaBrain-SJTU/ECGAD}
Herbal plants are nutritious plants that can be used as an alternative to traditional disease healing. In Indonesia there are various types of herbal plants. But with the development of the times, the existence of herbal plants as traditional medicines began to be forgotten so that not everyone could recognize them. Having the ability to identify herbal plants can have many positive impacts. However, there is a problem where identifying plants can take a long time because it requires in-depth knowledge and careful examination of plant criteria. So that the application of computer vision can help identify herbal plants. Previously, research had been conducted on the introduction of herbal plants from Vietnam using several algorithms, but from these research the accuracy was not high enough. Therefore, this study intends to implement transfer learning from the Convolutional Neural Network (CNN) algorithm to classify types of herbal plants from Indonesia. This research was conducted by collecting image data of herbal plants from Indonesia independently through the Google Images search engine. After that, it will go through the data preprocessing, classification using the transfer learning method from CNN, and analysis will be carried out. The CNN transfer learning models used are ResNet34, DenseNet121, and VGG11_bn. Based on the test results of the three models, it was found that DenseNet121 was the model with the highest accuracy, which was 87.4%. In addition, testing was also carried out using the scratch model and obtained an accuracy of 43.53%. The Hyperparameter configuration used in this test is the ExponentialLR scheduler with a gamma value of 0.9; learning rate 0.001; Cross Entropy Loss function; Adam optimizer; and the number of epochs is 50. Indonesia Medicinal Plant Dataset can be accessed at the following link //github.com/Salmanim20/indo_medicinal_plant
Stochastic gradient descent (SGD) is the simplest deep learning optimizer with which to train deep neural networks. While SGD can use various learning rates, such as constant or diminishing rates, the previous numerical results showed that SGD performs better than other deep learning optimizers using when it uses learning rates given by line search methods. In this paper, we perform a convergence analysis on SGD with a learning rate given by an Armijo line search for nonconvex optimization. The analysis indicates that the upper bound of the expectation of the squared norm of the full gradient becomes small when the number of steps and the batch size are large. Next, we show that, for SGD with the Armijo-line-search learning rate, the number of steps needed for nonconvex optimization is a monotone decreasing convex function of the batch size; that is, the number of steps needed for nonconvex optimization decreases as the batch size increases. Furthermore, we show that the stochastic first-order oracle (SFO) complexity, which is the stochastic gradient computation cost, is a convex function of the batch size; that is, there exists a critical batch size that minimizes the SFO complexity. Finally, we provide numerical results that support our theoretical results. The numerical results indicate that the number of steps needed for training deep neural networks decreases as the batch size increases and that there exist the critical batch sizes that can be estimated from the theoretical results.
Graph neural networks (GNNs) have been proven to be effective in various network-related tasks. Most existing GNNs usually exploit the low-frequency signals of node features, which gives rise to one fundamental question: is the low-frequency information all we need in the real world applications? In this paper, we first present an experimental investigation assessing the roles of low-frequency and high-frequency signals, where the results clearly show that exploring low-frequency signal only is distant from learning an effective node representation in different scenarios. How can we adaptively learn more information beyond low-frequency information in GNNs? A well-informed answer can help GNNs enhance the adaptability. We tackle this challenge and propose a novel Frequency Adaptation Graph Convolutional Networks (FAGCN) with a self-gating mechanism, which can adaptively integrate different signals in the process of message passing. For a deeper understanding, we theoretically analyze the roles of low-frequency signals and high-frequency signals on learning node representations, which further explains why FAGCN can perform well on different types of networks. Extensive experiments on six real-world networks validate that FAGCN not only alleviates the over-smoothing problem, but also has advantages over the state-of-the-arts.
Pre-training techniques have been verified successfully in a variety of NLP tasks in recent years. Despite the widespread of pre-training models for NLP applications, they almost focused on text-level manipulation, while neglecting the layout and style information that is vital for document image understanding. In this paper, we propose the LayoutLM to jointly model the interaction between text and layout information across scanned document images, which is beneficial for a great number of real-world document image understanding tasks such as information extraction from scanned documents. Furthermore, we also leverage the image features to incorporate the visual information of words into LayoutLM. To the best of our knowledge, this is the first time that text and layout are jointly learned in a single framework for document-level pre-training. It achieves new state-of-the-art results in several downstream tasks, including form understanding (from 70.72 to 79.27), receipt understanding (from 94.02 to 95.24) and document image classification (from 93.07 to 94.42). The code and pre-trained LayoutLM models are publicly available at //github.com/microsoft/unilm/tree/master/layoutlm.
Within the rapidly developing Internet of Things (IoT), numerous and diverse physical devices, Edge devices, Cloud infrastructure, and their quality of service requirements (QoS), need to be represented within a unified specification in order to enable rapid IoT application development, monitoring, and dynamic reconfiguration. But heterogeneities among different configuration knowledge representation models pose limitations for acquisition, discovery and curation of configuration knowledge for coordinated IoT applications. This paper proposes a unified data model to represent IoT resource configuration knowledge artifacts. It also proposes IoT-CANE (Context-Aware recommendatioN systEm) to facilitate incremental knowledge acquisition and declarative context driven knowledge recommendation.