亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Vision-language foundation models such as CLIP have shown impressive zero-shot performance on many tasks and datasets, especially thanks to their free-text inputs. However, they struggle to handle some downstream tasks, such as fine-grained attribute detection and localization. In this paper, we propose a multitask fine-tuning strategy based on a positive/negative prompt formulation to further leverage the capacities of the vision-language foundation models. Using the CLIP architecture as baseline, we show strong improvements on bird fine-grained attribute detection and localization tasks, while also increasing the classification performance on the CUB200-2011 dataset. We provide source code for reproducibility purposes: it is available at //github.com/FactoDeepLearning/MultitaskVLFM.

相關內容

Most deep noise suppression (DNS) models are trained with reference-based losses requiring access to clean speech. However, sometimes an additive microphone model is insufficient for real-world applications. Accordingly, ways to use real training data in supervised learning for DNS models promise to reduce a potential training/inference mismatch. Employing real data for DNS training requires either generative approaches or a reference-free loss without access to the corresponding clean speech. In this work, we propose to employ an end-to-end non-intrusive deep neural network (DNN), named PESQ-DNN, to estimate perceptual evaluation of speech quality (PESQ) scores of enhanced real data. It provides a reference-free perceptual loss for employing real data during DNS training, maximizing the PESQ scores. Furthermore, we use an epoch-wise alternating training protocol, updating the DNS model on real data, followed by PESQ-DNN updating on synthetic data. The DNS model trained with the PESQ-DNN employing real data outperforms all reference methods employing only synthetic training data. On synthetic test data, our proposed method excels the Interspeech 2021 DNS Challenge baseline by a significant 0.32 PESQ points. Both on synthetic and real test data, the proposed method beats the baseline by 0.05 DNSMOS points - although PESQ-DNN optimizes for a different perceptual metric.

Large-scale language models (LLMs), such as ChatGPT, are capable of generating human-like responses for various downstream tasks, such as task-oriented dialogues and question answering. However, applying LLMs to medical domains remains challenging due to their inability to leverage domain-specific knowledge. In this study, we present the Large-scale Language Models Augmented with Medical Textbooks (LLM-AMT), which integrates authoritative medical textbooks as the cornerstone of its design, enhancing its proficiency in the specialized domain through plug-and-play modules, comprised of a Hybrid Textbook Retriever, supplemented by the Query Augmenter and the LLM Reader. Experimental evaluation on three open-domain medical question-answering tasks reveals a substantial enhancement in both the professionalism and accuracy of the LLM responses when utilizing LLM-AMT, exhibiting an improvement ranging from 11.4% to 13.2%. Despite being 100 times smaller, we found that medical textbooks as the retrieval corpus serves as a more valuable external knowledge source than Wikipedia in the medical domain. Our experiments show that textbook augmentation results in a performance improvement ranging from 9.7% to 12.2% over Wikipedia augmentation.

Foreign accent conversion (FAC) is a special application of voice conversion (VC) which aims to convert the accented speech of a non-native speaker to a native-sounding speech with the same speaker identity. FAC is difficult since the native speech from the desired non-native speaker to be used as the training target is impossible to collect. In this work, we evaluate three recently proposed methods for ground-truth-free FAC, where all of them aim to harness the power of sequence-to-sequence (seq2seq) and non-parallel VC models to properly convert the accent and control the speaker identity. Our experimental evaluation results show that no single method was significantly better than the others in all evaluation axes, which is in contrast to conclusions drawn in previous studies. We also explain the effectiveness of these methods with the training input and output of the seq2seq model and examine the design choice of the non-parallel VC model, and show that intelligibility measures such as word error rates do not correlate well with subjective accentedness. Finally, our implementation is open-sourced to promote reproducible research and help future researchers improve upon the compared systems.

In recent years, soft prompt learning methods have been proposed to fine-tune large-scale vision-language pre-trained models for various downstream tasks. These methods typically combine learnable textual tokens with class tokens as input for models with frozen parameters. However, they often employ a single prompt to describe class contexts, failing to capture categories' diverse attributes adequately. This study introduces the Partitioned Multi-modal Prompt (PMPO), a multi-modal prompting technique that extends the soft prompt from a single learnable prompt to multiple prompts. Our method divides the visual encoder depths and connects learnable prompts to the separated visual depths, enabling different prompts to capture the hierarchical contextual depths of visual representations. Furthermore, to maximize the advantages of multi-prompt learning, we incorporate prior information from manually designed templates and learnable multi-prompts, thus improving the generalization capabilities of our approach. We evaluate the effectiveness of our approach on three challenging tasks: new class generalization, cross-dataset evaluation, and domain generalization. For instance, our method achieves a $79.28$ harmonic mean, averaged over 11 diverse image recognition datasets ($+7.62$ compared to CoOp), demonstrating significant competitiveness compared to state-of-the-art prompting methods.

Reinforcement Learning (RL) methods are typically sample-inefficient, making it challenging to train and deploy RL-policies in real world robots. Even a robust policy trained in simulation, requires a real-world deployment to assess their performance. This paper proposes a new approach to evaluate the real-world performance of agent policies without deploying them in the real world. The proposed approach incorporates a simulator along with real-world offline data to evaluate the performance of any policy using the framework of Marginalized Importance Sampling (MIS). Existing MIS methods face two challenges: (1) large density ratios that deviate from a reasonable range and (2) indirect supervision, where the ratio needs to be inferred indirectly, thus exacerbating estimation error. Our approach addresses these challenges by introducing the target policy's occupancy in the simulator as an intermediate variable and learning the density ratio as the product of two terms that can be learned separately. The first term is learned with direct supervision and the second term has a small magnitude, thus making it easier to run. We analyze the sample complexity as well as error propagation of our two step-procedure. Furthermore, we empirically evaluate our approach on Sim2Sim environments such as Cartpole, Reacher and Half-Cheetah. Our results show that our method generalizes well across a variety of Sim2Sim gap, target policies and offline data collection policies. We also demonstrate the performance of our algorithm on a Sim2Real task of validating the performance of a 7 DOF robotic arm using offline data along with a gazebo based arm simulator.

Existing knowledge graph (KG) embedding models have primarily focused on static KGs. However, real-world KGs do not remain static, but rather evolve and grow in tandem with the development of KG applications. Consequently, new facts and previously unseen entities and relations continually emerge, necessitating an embedding model that can quickly learn and transfer new knowledge through growth. Motivated by this, we delve into an expanding field of KG embedding in this paper, i.e., lifelong KG embedding. We consider knowledge transfer and retention of the learning on growing snapshots of a KG without having to learn embeddings from scratch. The proposed model includes a masked KG autoencoder for embedding learning and update, with an embedding transfer strategy to inject the learned knowledge into the new entity and relation embeddings, and an embedding regularization method to avoid catastrophic forgetting. To investigate the impacts of different aspects of KG growth, we construct four datasets to evaluate the performance of lifelong KG embedding. Experimental results show that the proposed model outperforms the state-of-the-art inductive and lifelong embedding baselines.

With the rise of powerful pre-trained vision-language models like CLIP, it becomes essential to investigate ways to adapt these models to downstream datasets. A recently proposed method named Context Optimization (CoOp) introduces the concept of prompt learning -- a recent trend in NLP -- to the vision domain for adapting pre-trained vision-language models. Specifically, CoOp turns context words in a prompt into a set of learnable vectors and, with only a few labeled images for learning, can achieve huge improvements over intensively-tuned manual prompts. In our study we identify a critical problem of CoOp: the learned context is not generalizable to wider unseen classes within the same dataset, suggesting that CoOp overfits base classes observed during training. To address the problem, we propose Conditional Context Optimization (CoCoOp), which extends CoOp by further learning a lightweight neural network to generate for each image an input-conditional token (vector). Compared to CoOp's static prompts, our dynamic prompts adapt to each instance and are thus less sensitive to class shift. Extensive experiments show that CoCoOp generalizes much better than CoOp to unseen classes, even showing promising transferability beyond a single dataset; and yields stronger domain generalization performance as well. Code is available at //github.com/KaiyangZhou/CoOp.

Few-shot Knowledge Graph (KG) completion is a focus of current research, where each task aims at querying unseen facts of a relation given its few-shot reference entity pairs. Recent attempts solve this problem by learning static representations of entities and references, ignoring their dynamic properties, i.e., entities may exhibit diverse roles within task relations, and references may make different contributions to queries. This work proposes an adaptive attentional network for few-shot KG completion by learning adaptive entity and reference representations. Specifically, entities are modeled by an adaptive neighbor encoder to discern their task-oriented roles, while references are modeled by an adaptive query-aware aggregator to differentiate their contributions. Through the attention mechanism, both entities and references can capture their fine-grained semantic meanings, and thus render more expressive representations. This will be more predictive for knowledge acquisition in the few-shot scenario. Evaluation in link prediction on two public datasets shows that our approach achieves new state-of-the-art results with different few-shot sizes.

Convolutional neural networks (CNNs) have shown dramatic improvements in single image super-resolution (SISR) by using large-scale external samples. Despite their remarkable performance based on the external dataset, they cannot exploit internal information within a specific image. Another problem is that they are applicable only to the specific condition of data that they are supervised. For instance, the low-resolution (LR) image should be a "bicubic" downsampled noise-free image from a high-resolution (HR) one. To address both issues, zero-shot super-resolution (ZSSR) has been proposed for flexible internal learning. However, they require thousands of gradient updates, i.e., long inference time. In this paper, we present Meta-Transfer Learning for Zero-Shot Super-Resolution (MZSR), which leverages ZSSR. Precisely, it is based on finding a generic initial parameter that is suitable for internal learning. Thus, we can exploit both external and internal information, where one single gradient update can yield quite considerable results. (See Figure 1). With our method, the network can quickly adapt to a given image condition. In this respect, our method can be applied to a large spectrum of image conditions within a fast adaptation process.

Pre-trained deep neural network language models such as ELMo, GPT, BERT and XLNet have recently achieved state-of-the-art performance on a variety of language understanding tasks. However, their size makes them impractical for a number of scenarios, especially on mobile and edge devices. In particular, the input word embedding matrix accounts for a significant proportion of the model's memory footprint, due to the large input vocabulary and embedding dimensions. Knowledge distillation techniques have had success at compressing large neural network models, but they are ineffective at yielding student models with vocabularies different from the original teacher models. We introduce a novel knowledge distillation technique for training a student model with a significantly smaller vocabulary as well as lower embedding and hidden state dimensions. Specifically, we employ a dual-training mechanism that trains the teacher and student models simultaneously to obtain optimal word embeddings for the student vocabulary. We combine this approach with learning shared projection matrices that transfer layer-wise knowledge from the teacher model to the student model. Our method is able to compress the BERT_BASE model by more than 60x, with only a minor drop in downstream task metrics, resulting in a language model with a footprint of under 7MB. Experimental results also demonstrate higher compression efficiency and accuracy when compared with other state-of-the-art compression techniques.

北京阿比特科技有限公司