亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

A new approach, iteration projection method, is proposed to solve the saddle point problem obtained after the full discretization of the unsteady Navier-Stokes equations. The proposed method iterates projections in each time step with a proper convection form. We prove that the projection iterations converge with a certain parameter regime. Optimal iteration convergence can be achieved with the modulation of parameter values. This new method has several significant improvements over the Uzawa method and the projection method both theoretically and practically. First, when the iterative projections are fully convergent in each time step, the numerical velocity is weakly divergence free (pointwise divergence free in divergence free finite element methods), and the stability and error estimate are rigorously proven. With proper parameters, this method converges much faster than the Uzawa method. Second, numerical simulations show that with rather relaxed stopping criteria which require only a few iterations each time step, the numerical solution preserves stability and accuracy for high Reynolds numbers, where the convectional projection method would fail. Furthermore, this method retains the efficiency of the traditional projection method by decoupling the velocity and pressure fields, which splits the saddle point system into small elliptic problems. Three dimensional simulations with Taylor-Hood P2/P1 finite elements are presented to demonstrate the performance and efficiency of this method. More importantly, this method is a generic approach and thus there are many potential improvements and extensions of the iterative projection method, including utilization of various convection forms, association with stabilization techniques for high Reynolds numbers, applications to other saddle point problems.

相關內容

We introduce a new overlapping Domain Decomposition Method (DDM) to solve the fully nonlinear Monge-Amp\`ere equation. While DDMs have been extensively studied for linear problems, their application to fully nonlinear partial differential equations (PDE) remains limited in the literature. To address this gap, we establish a proof of global convergence of these new iterative algorithms using a discrete comparison principle argument. Several numerical tests are performed to validate the convergence theorem. These numerical experiments involve examples of varying regularity. Computational experiments show that method is efficient, robust, and requires relatively few iterations to converge. The results reveal great potential for DDM methods to lead to highly efficient and parallelizable solvers for large-scale problems that are computationally intractable using existing solution methods.

Recently, the use of deep equilibrium methods has emerged as a new approach for solving imaging and other ill-posed inverse problems. While learned components may be a key factor in the good performance of these methods in practice, a theoretical justification from a regularization point of view is still lacking. In this paper, we address this issue by providing stability and convergence results for the class of equilibrium methods. In addition, we derive convergence rates and stability estimates in the symmetric Bregman distance. We strengthen our results for regularization operators with contractive residuals. Furthermore, we use the presented analysis to gain insight into the practical behavior of these methods, including a lower bound on the performance of the regularized solutions. In addition, we show that the convergence analysis leads to the design of a new type of loss function which has several advantages over previous ones. Numerical simulations are used to support our findings.

Directed acyclic graphs (DAGs) encode a lot of information about a particular distribution in their structure. However, compute required to infer these structures is typically super-exponential in the number of variables, as inference requires a sweep of a combinatorially large space of potential structures. That is, until recent advances made it possible to search this space using a differentiable metric, drastically reducing search time. While this technique -- named NOTEARS -- is widely considered a seminal work in DAG-discovery, it concedes an important property in favour of differentiability: transportability. To be transportable, the structures discovered on one dataset must apply to another dataset from the same domain. We introduce D-Struct which recovers transportability in the discovered structures through a novel architecture and loss function while remaining fully differentiable. Because D-Struct remains differentiable, our method can be easily adopted in existing differentiable architectures, as was previously done with NOTEARS. In our experiments, we empirically validate D-Struct with respect to edge accuracy and structural Hamming distance in a variety of settings.

This work is concerned with the analysis of a space-time finite element discontinuous Galerkin method on polytopal meshes (XT-PolydG) for the numerical discretization of wave propagation in coupled poroelastic-elastic media. The mathematical model consists of the low-frequency Biot's equations in the poroelastic medium and the elastodynamics equation for the elastic one. To realize the coupling, suitable transmission conditions on the interface between the two domains are (weakly) embedded in the formulation. The proposed PolydG discretization in space is then coupled with a dG time integration scheme, resulting in a full space-time dG discretization. We present the stability analysis for both the continuous and the semidiscrete formulations, and we derive error estimates for the semidiscrete formulation in a suitable energy norm. The method is applied to a wide set of numerical test cases to verify the theoretical bounds. Examples of physical interest are also presented to investigate the capability of the proposed method in relevant geophysical scenarios.

We consider gradient-related methods for low-rank matrix optimization with a smooth cost function. The methods operate on single factors of the low-rank factorization and share aspects of both alternating and Riemannian optimization. Two possible choices for the search directions based on Gauss-Southwell type selection rules are compared: one using the gradient of a factorized non-convex formulation, the other using the Riemannian gradient. While both methods provide gradient convergence guarantees that are similar to the unconstrained case, the version based on Riemannian gradient is significantly more robust with respect to small singular values and the condition number of the cost function, as illustrated by numerical experiments. As a side result of our approach, we also obtain new convergence results for the alternating least squares method.

In this work, we propose a numerical method to compute the Wasserstein Hamiltonian flow (WHF), which is a Hamiltonian system on the probability density manifold. Many well-known PDE systems can be reformulated as WHFs. We use parameterized function as push-forward map to characterize the solution of WHF, and convert the PDE to a finite-dimensional ODE system, which is a Hamiltonian system in the phase space of the parameter manifold. We establish error analysis results for the continuous time approximation scheme in Wasserstein metric. For the numerical implementation, we use neural networks as push-forward maps. We apply an effective symplectic scheme to solve the derived Hamiltonian ODE system so that the method preserves some important quantities such as total energy. The computation is done by fully deterministic symplectic integrator without any neural network training. Thus, our method does not involve direct optimization over network parameters and hence can avoid the error introduced by stochastic gradient descent (SGD) methods, which is usually hard to quantify and measure. The proposed algorithm is a sampling-based approach that scales well to higher dimensional problems. In addition, the method also provides an alternative connection between the Lagrangian and Eulerian perspectives of the original WHF through the parameterized ODE dynamics.

In this work, we develop an efficient high order discontinuous Galerkin (DG) method for solving the Electrical Impedance Tomography (EIT). EIT is a highly nonlinear ill-posed inverse problem where the interior conductivity of an object is recovered from the surface measurements of voltage and current flux. We first propose a new optimization problem based on the recovery of the conductivity from the Dirichlet-to-Neumann map to minimize the mismatch between the predicted current and the measured current on the boundary. And we further prove the existence of the minimizer. Numerically the optimization problem is solved by a third order DG method with quadratic polynomials. Numerical results for several two-dimensional problems with both single and multiple inclusions are demonstrated to show the high {accuracy and efficiency} of the proposed high order DG method. Analysis and computation for discontinuous conductivities are also studied in this work.

We propose and analyze a hybridizable discontinuous Galerkin (HDG) method for solving a mixed magnetic advection-diffusion problem within a more general Friedrichs system framework. With carefully constructed numerical traces, we introduce two distinct stabilization parameters: $\tau_t$ for the tangential trace and $\tau_n$ for the normal trace. These parameters are tailored to satisfy different requirements, ensuring the stability and convergence of the method. Furthermore, we incorporate a weight function to facilitate the establishment of stability conditions. We also investigate an elementwise postprocessing technique that proves to be effective for both two-dimensional and three-dimensional problems in terms of broken $H({\rm curl})$ semi-norm accuracy improvement. Extensive numerical examples are presented to showcase the performance and effectiveness of the HDG method and the postprocessing techniques.

We consider the problem of minimizing a convex function over a closed convex set, with Projected Gradient Descent (PGD). We propose a fully parameter-free version of AdaGrad, which is adaptive to the distance between the initialization and the optimum, and to the sum of the square norm of the subgradients. Our algorithm is able to handle projection steps, does not involve restarts, reweighing along the trajectory or additional gradient evaluations compared to the classical PGD. It also fulfills optimal rates of convergence for cumulative regret up to logarithmic factors. We provide an extension of our approach to stochastic optimization and conduct numerical experiments supporting the developed theory.

The projection operation is a critical component in a wide range of optimization algorithms, such as online gradient descent (OGD), for enforcing constraints and achieving optimal regret bounds. However, it suffers from computational complexity limitations in high-dimensional settings or when dealing with ill-conditioned constraint sets. Projection-free algorithms address this issue by replacing the projection oracle with more efficient optimization subroutines. But to date, these methods have been developed primarily in the Euclidean setting, and while there has been growing interest in optimization on Riemannian manifolds, there has been essentially no work in trying to utilize projection-free tools here. An apparent issue is that non-trivial affine functions are generally non-convex in such domains. In this paper, we present methods for obtaining sub-linear regret guarantees in online geodesically convex optimization on curved spaces for two scenarios: when we have access to (a) a separation oracle or (b) a linear optimization oracle. For geodesically convex losses, and when a separation oracle is available, our algorithms achieve $O(T^{1/2}\:)$ and $O(T^{3/4}\;)$ adaptive regret guarantees in the full information setting and the bandit setting, respectively. When a linear optimization oracle is available, we obtain regret rates of $O(T^{3/4}\;)$ for geodesically convex losses and $O(T^{2/3}\; log T )$ for strongly geodesically convex losses

北京阿比特科技有限公司