亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We propose and analyze a hybridizable discontinuous Galerkin (HDG) method for solving a mixed magnetic advection-diffusion problem within a more general Friedrichs system framework. With carefully constructed numerical traces, we introduce two distinct stabilization parameters: $\tau_t$ for the tangential trace and $\tau_n$ for the normal trace. These parameters are tailored to satisfy different requirements, ensuring the stability and convergence of the method. Furthermore, we incorporate a weight function to facilitate the establishment of stability conditions. We also investigate an elementwise postprocessing technique that proves to be effective for both two-dimensional and three-dimensional problems in terms of broken $H({\rm curl})$ semi-norm accuracy improvement. Extensive numerical examples are presented to showcase the performance and effectiveness of the HDG method and the postprocessing techniques.

相關內容

A numerical procedure providing guaranteed two-sided bounds on the effective coefficients of elliptic partial differential operators is presented. The upper bounds are obtained in a standard manner through the variational formulation of the problem and by applying the finite element method. To obtain the lower bounds we formulate the dual variational problem and introduce appropriate approximation spaces employing the finite element method as well. We deal with the 3D setting, which has been rarely considered in the literature so far. The theoretical justification of the procedure is presented and supported with illustrative examples.

Dimension reduction techniques have long been an important topic in statistics, and active subspaces (AS) have received much attention this past decade in the computer experiments literature. The most common approach towards estimating the AS is to use Monte Carlo with numerical gradient evaluation. While sensible in some settings, this approach has obvious drawbacks. Recent research has demonstrated that active subspace calculations can be obtained in closed form, conditional on a Gaussian process (GP) surrogate, which can be limiting in high-dimensional settings for computational reasons. In this paper, we produce the relevant calculations for a more general case when the model of interest is a linear combination of tensor products. These general equations can be applied to the GP, recovering previous results as a special case, or applied to the models constructed by other regression techniques including multivariate adaptive regression splines (MARS). Using a MARS surrogate has many advantages including improved scaling, better estimation of active subspaces in high dimensions and the ability to handle a large number of prior distributions in closed form. In one real-world example, we obtain the active subspace of a radiation-transport code with 240 inputs and 9,372 model runs in under half an hour.

When has an agent converged? Standard models of the reinforcement learning problem give rise to a straightforward definition of convergence: An agent converges when its behavior or performance in each environment state stops changing. However, as we shift the focus of our learning problem from the environment's state to the agent's state, the concept of an agent's convergence becomes significantly less clear. In this paper, we propose two complementary accounts of agent convergence in a framing of the reinforcement learning problem that centers around bounded agents. The first view says that a bounded agent has converged when the minimal number of states needed to describe the agent's future behavior cannot decrease. The second view says that a bounded agent has converged just when the agent's performance only changes if the agent's internal state changes. We establish basic properties of these two definitions, show that they accommodate typical views of convergence in standard settings, and prove several facts about their nature and relationship. We take these perspectives, definitions, and analysis to bring clarity to a central idea of the field.

Discrete ordinate ($S_N$) and filtered spherical harmonics ($FP_N$) based schemes have been proven to be robust and accurate in solving the Boltzmann transport equation but they have their own strengths and weaknesses in different physical scenarios. We present a new method based on a finite element approach in angle that combines the strengths of both methods and mitigates their disadvantages. The angular variables are specified on a spherical geodesic grid with functions on the sphere being represented using a finite element basis. A positivity-preserving limiting strategy is employed to prevent non-physical values from appearing in the solutions. The resulting method is then compared with both $S_N$ and $FP_N$ schemes using four test problems and is found to perform well when one of the other methods fail.

Partial differential equations (PDEs) are important tools to model physical systems and including them into machine learning models is an important way of incorporating physical knowledge. Given any system of linear PDEs with constant coefficients, we propose a family of Gaussian process (GP) priors, which we call EPGP, such that all realizations are exact solutions of this system. We apply the Ehrenpreis-Palamodov fundamental principle, which works as a non-linear Fourier transform, to construct GP kernels mirroring standard spectral methods for GPs. Our approach can infer probable solutions of linear PDE systems from any data such as noisy measurements, or pointwise defined initial and boundary conditions. Constructing EPGP-priors is algorithmic, generally applicable, and comes with a sparse version (S-EPGP) that learns the relevant spectral frequencies and works better for big data sets. We demonstrate our approach on three families of systems of PDEs, the heat equation, wave equation, and Maxwell's equations, where we improve upon the state of the art in computation time and precision, in some experiments by several orders of magnitude.

We present a novel variant of the multi-level Monte Carlo method that effectively utilizes a reserved computational budget on a high-performance computing system to minimize the mean squared error. Our approach combines concepts of the continuation multi-level Monte Carlo method with dynamic programming techniques following Bellman's optimality principle, and a new parallelization strategy based on a single distributed data structure. Additionally, we establish a theoretical bound on the error reduction on a parallel computing cluster and provide empirical evidence that the proposed method adheres to this bound. We implement, test, and benchmark the approach on computationally demanding problems, focusing on its application to acoustic wave propagation in high-dimensional random media.

Learning-based methods for inverse problems, adapting to the data's inherent structure, have become ubiquitous in the last decade. Besides empirical investigations of their often remarkable performance, an increasing number of works addresses the issue of theoretical guarantees. Recently, [3] exploited invertible residual networks (iResNets) to learn provably convergent regularizations given reasonable assumptions. They enforced these guarantees by approximating the linear forward operator with an iResNet. Supervised training on relevant samples introduces data dependency into the approach. An open question in this context is to which extent the data's inherent structure influences the training outcome, i.e., the learned reconstruction scheme. Here we address this delicate interplay of training design and data dependency from a Bayesian perspective and shed light on opportunities and limitations. We resolve these limitations by analyzing reconstruction-based training of the inverses of iResNets, where we show that this optimization strategy introduces a level of data-dependency that cannot be achieved by approximation training. We further provide and discuss a series of numerical experiments underpinning and extending the theoretical findings.

This paper is concerned with goal-oriented a posteriori error estimation for nonlinear functionals in the context of nonlinear variational problems solved with continuous Galerkin finite element discretizations. A two-level, or discrete, adjoint-based approach for error estimation is considered. The traditional method to derive an error estimate in this context requires linearizing both the nonlinear variational form and the nonlinear functional of interest which introduces linearization errors into the error estimate. In this paper, we investigate these linearization errors. In particular, we develop a novel discrete goal-oriented error estimate that accounts for traditionally neglected nonlinear terms at the expense of greater computational cost. We demonstrate how this error estimate can be used to drive mesh adaptivity. We show that accounting for linearization errors in the error estimate can improve its effectivity for several nonlinear model problems and quantities of interest. We also demonstrate that an adaptive strategy based on the newly proposed estimate can lead to more accurate approximations of the nonlinear functional with fewer degrees of freedom when compared to uniform refinement and traditional adjoint-based approaches.

This paper is focused on the approximation of the Euler equations of compressible fluid dynamics on a staggered mesh. With this aim, the flow parameters are described by the velocity, the density and the internal energy. The thermodynamic quantities are described on the elements of the mesh, and thus the approximation is only in $L^2$, while the kinematic quantities are globally continuous. The method is general in the sense that the thermodynamic and kinetic parameters are described by an arbitrary degree of polynomials. In practice, the difference between the degrees of the kinematic parameters and the thermodynamic ones {is set} to $1$. The integration in time is done using the forward Euler method but can be extended straightforwardly to higher-order methods. In order to guarantee that the limit solution will be a weak solution of the problem, we introduce a general correction method in the spirit of the Lagrangian staggered method described in \cite{Svetlana,MR4059382, MR3023731}, and we prove a Lax Wendroff theorem. The proof is valid for multidimensional versions of the scheme, even though most of the numerical illustrations in this work, on classical benchmark problems, are one-dimensional because we have easy access to the exact solution for comparison. We conclude by explaining that the method is general and can be used in different settings, for example, Finite Volume, or discontinuous Galerkin method, not just the specific one presented in this paper.

Designing efficient and rigorous numerical methods for sequential decision-making under uncertainty is a difficult problem that arises in many applications frameworks. In this paper we focus on the numerical solution of a subclass of impulse control problem for piecewise deterministic Markov process (PDMP) when the jump times are hidden. We first state the problem as a partially observed Markov decision process (POMDP) on a continuous state space and with controlled transition kernels corresponding to some specific skeleton chains of the PDMP. Then we proceed to build a numerically tractable approximation of the POMDP by tailor-made discretizations of the state spaces. The main difficulty in evaluating the discretization error come from the possible random or boundary jumps of the PDMP between consecutive epochs of the POMDP and requires special care. Finally we extensively discuss the practical construction of discretization grids and illustrate our method on simulations.

北京阿比特科技有限公司