Discrete ordinate ($S_N$) and filtered spherical harmonics ($FP_N$) based schemes have been proven to be robust and accurate in solving the Boltzmann transport equation but they have their own strengths and weaknesses in different physical scenarios. We present a new method based on a finite element approach in angle that combines the strengths of both methods and mitigates their disadvantages. The angular variables are specified on a spherical geodesic grid with functions on the sphere being represented using a finite element basis. A positivity-preserving limiting strategy is employed to prevent non-physical values from appearing in the solutions. The resulting method is then compared with both $S_N$ and $FP_N$ schemes using four test problems and is found to perform well when one of the other methods fail.
Clones of operations of arity $\omega$ (referred to as $\omega$-operations) have been employed by Neumann to represent varieties of infinitary algebras defined by operations of at most arity $\omega$. More recently, clone algebras have been introduced to study clones of functions, including $\omega$-operations, within the framework of one-sorted universal algebra. Additionally, polymorphisms of arity $\omega$, which are $\omega$-operations preserving the relations of a given first-order structure, have recently been used to establish model theory results with applications in the field of complexity of CSP problems. In this paper, we undertake a topological and algebraic study of polymorphisms of arity $\omega$ and their corresponding invariant relations. Given a Boolean ideal $X$ on the set $A^\omega$, we propose a method to endow the set of $\omega$-operations on $A$ with a topology, which we refer to as $X$-topology. Notably, the topology of pointwise convergence can be retrieved as a special case of this approach. Polymorphisms and invariant relations are then defined parametrically, with respect to the $X$-topology. We characterise the $X$-closed clones of $\omega$-operations in terms of $Pol^\omega$-$Inv^\omega$ and present a method to relate $Inv^\omega$-$Pol^\omega$ to the classical (finitary) $Inv$-$Pol$.
There has been a growing interest in parallel strategies for solving trajectory optimization problems. One key step in many algorithmic approaches to trajectory optimization is the solution of moderately-large and sparse linear systems. Iterative methods are particularly well-suited for parallel solves of such systems. However, fast and stable convergence of iterative methods is reliant on the application of a high-quality preconditioner that reduces the spread and increase the clustering of the eigenvalues of the target matrix. To improve the performance of these approaches, we present a new parallel-friendly symmetric stair preconditioner. We prove that our preconditioner has advantageous theoretical properties when used in conjunction with iterative methods for trajectory optimization such as a more clustered eigenvalue spectrum. Numerical experiments with typical trajectory optimization problems reveal that as compared to the best alternative parallel preconditioner from the literature, our symmetric stair preconditioner provides up to a 34% reduction in condition number and up to a 25% reduction in the number of resulting linear system solver iterations.
In matched observational studies, the inferred causal conclusions pretending that matching has taken into account all confounding can be sensitive to unmeasured confounding. In such cases, a sensitivity analysis is often conducted, which investigates whether the observed association between treatment and outcome is due to effects caused by the treatment or it is due to hidden confounding. In general, a sensitivity analysis tries to infer the minimum amount of hidden biases needed in order to explain away the observed association between treatment and outcome, assuming that the treatment has no effect. If the needed bias is large, then the treatment is likely to have significant effects. The Rosenbaum sensitivity analysis is a modern approach for conducting sensitivity analysis for matched observational studies. It investigates what magnitude the maximum of the hidden biases from all matched sets needs to be in order to explain away the observed association, assuming that the treatment has no effect. However, such a sensitivity analysis can be overly conservative and pessimistic, especially when the investigators believe that some matched sets may have exceptionally large hidden biases. In this paper, we generalize Rosenbaum's framework to conduct sensitivity analysis on quantiles of hidden biases from all matched sets, which are more robust than the maximum. Moreover, we demonstrate that the proposed sensitivity analysis on all quantiles of hidden biases is simultaneously valid and is thus a free lunch added to the conventional sensitivity analysis. The proposed approach works for general outcomes, general matched studies and general test statistics. Finally, we demonstrate that the proposed sensitivity analysis also works for bounded null hypotheses as long as the test statistic satisfies certain properties. An R package implementing the proposed method is also available online.
Variable-to-variable length (VV) codes are a class of lossless source coding. As their name implies, VV codes encode a variable-length sequence of source symbols into a variable-length codeword. This paper will give a complete proof of an important theorem for variable-to-variable length codes.
We study the complexity of producing $(\delta,\epsilon)$-stationary points of Lipschitz objectives which are possibly neither smooth nor convex, using only noisy function evaluations. Recent works proposed several stochastic zero-order algorithms that solve this task, all of which suffer from a dimension-dependence of $\Omega(d^{3/2})$ where $d$ is the dimension of the problem, which was conjectured to be optimal. We refute this conjecture by providing a faster algorithm that has complexity $O(d\delta^{-1}\epsilon^{-3})$, which is optimal (up to numerical constants) with respect to $d$ and also optimal with respect to the accuracy parameters $\delta,\epsilon$, thus solving an open question due to Lin et al. (NeurIPS'22). Moreover, the convergence rate achieved by our algorithm is also optimal for smooth objectives, proving that in the nonconvex stochastic zero-order setting, nonsmooth optimization is as easy as smooth optimization. We provide algorithms that achieve the aforementioned convergence rate in expectation as well as with high probability. Our analysis is based on a simple yet powerful geometric lemma regarding the Goldstein-subdifferential set, which allows utilizing recent advancements in first-order nonsmooth nonconvex optimization.
The motions of mechanisms can be described in terms of screw coordinates by means of an exponential mapping. The product of exponentials (POE) describes the configuration of a chain of bodies connected by lower pair joints. The kinematics is thus given in terms of joint screws. The POE serves to express loop constraints for mechanisms as well as the forward kinematics of serial manipulators. Besides the compact formulations, the POE gives rise to purely algebraic relations for derivatives wrt. joint variables. It is known that the partial derivatives of the instantaneous joint screws (columns of the geometric Jacobian) are determined by Lie brackets the joint screws. Lesser-known is that derivative of arbitrary order can be compactly expressed by Lie brackets. This has significance for higher-order forward/inverse kinematics and dynamics of robots and multibody systems. Various relations were reported but are scattered in the literature and insufficiently recognized. This paper aims to provide a comprehensive overview of the relevant relations. Its original contributions are closed form and recursive relations for higher-order derivatives and Taylor expansions of various kinematic relations. Their application to kinematic control and dynamics of robotic manipulators and multibody systems is discussed.
We consider relational semantics (R-models) for the Lambek calculus extended with intersection and explicit constants for zero and unit. For its variant without constants and a restriction which disallows empty antecedents, Andreka and Mikulas (1994) prove strong completeness. We show that it fails without this restriction, but, on the other hand, prove weak completeness for non-standard interpretation of constants. For the standard interpretation, even weak completeness fails. The weak completeness result extends to an infinitary setting, for so-called iterative divisions (Kleene star under division). We also prove strong completeness results for product-free fragments.
We introduce two new classes of measures of information for statistical experiments which generalise and subsume $\phi$-divergences, integral probability metrics, $\mathfrak{N}$-distances (MMD), and $(f,\Gamma)$ divergences between two or more distributions. This enables us to derive a simple geometrical relationship between measures of information and the Bayes risk of a statistical decision problem, thus extending the variational $\phi$-divergence representation to multiple distributions in an entirely symmetric manner. The new families of divergence are closed under the action of Markov operators which yields an information processing equality which is a refinement and generalisation of the classical data processing inequality. This equality gives insight into the significance of the choice of the hypothesis class in classical risk minimization.
Neural machine translation (NMT) is a deep learning based approach for machine translation, which yields the state-of-the-art translation performance in scenarios where large-scale parallel corpora are available. Although the high-quality and domain-specific translation is crucial in the real world, domain-specific corpora are usually scarce or nonexistent, and thus vanilla NMT performs poorly in such scenarios. Domain adaptation that leverages both out-of-domain parallel corpora as well as monolingual corpora for in-domain translation, is very important for domain-specific translation. In this paper, we give a comprehensive survey of the state-of-the-art domain adaptation techniques for NMT.
Object detection typically assumes that training and test data are drawn from an identical distribution, which, however, does not always hold in practice. Such a distribution mismatch will lead to a significant performance drop. In this work, we aim to improve the cross-domain robustness of object detection. We tackle the domain shift on two levels: 1) the image-level shift, such as image style, illumination, etc, and 2) the instance-level shift, such as object appearance, size, etc. We build our approach based on the recent state-of-the-art Faster R-CNN model, and design two domain adaptation components, on image level and instance level, to reduce the domain discrepancy. The two domain adaptation components are based on H-divergence theory, and are implemented by learning a domain classifier in adversarial training manner. The domain classifiers on different levels are further reinforced with a consistency regularization to learn a domain-invariant region proposal network (RPN) in the Faster R-CNN model. We evaluate our newly proposed approach using multiple datasets including Cityscapes, KITTI, SIM10K, etc. The results demonstrate the effectiveness of our proposed approach for robust object detection in various domain shift scenarios.