When has an agent converged? Standard models of the reinforcement learning problem give rise to a straightforward definition of convergence: An agent converges when its behavior or performance in each environment state stops changing. However, as we shift the focus of our learning problem from the environment's state to the agent's state, the concept of an agent's convergence becomes significantly less clear. In this paper, we propose two complementary accounts of agent convergence in a framing of the reinforcement learning problem that centers around bounded agents. The first view says that a bounded agent has converged when the minimal number of states needed to describe the agent's future behavior cannot decrease. The second view says that a bounded agent has converged just when the agent's performance only changes if the agent's internal state changes. We establish basic properties of these two definitions, show that they accommodate typical views of convergence in standard settings, and prove several facts about their nature and relationship. We take these perspectives, definitions, and analysis to bring clarity to a central idea of the field.
The development of highly fluent large language models (LLMs) has prompted increased interest in assessing their reasoning and problem-solving capabilities. We investigate whether several LLMs can solve a classic type of deductive reasoning problem from the cognitive science literature. The tested LLMs have limited abilities to solve these problems in their conventional form. We performed follow up experiments to investigate if changes to the presentation format and content improve model performance. We do find performance differences between conditions; however, they do not improve overall performance. Moreover, we find that performance interacts with presentation format and content in unexpected ways that differ from human performance. Overall, our results suggest that LLMs have unique reasoning biases that are only partially predicted from human reasoning performance.
We address the problem of learning representations from observations of a scene involving an agent and an external object the agent interacts with. To this end, we propose a representation learning framework extracting the location in physical space of both the agent and the object from unstructured observations of arbitrary nature. Our framework relies on the actions performed by the agent as the only source of supervision, while assuming that the object is displaced by the agent via unknown dynamics. We provide a theoretical foundation and formally prove that an ideal learner is guaranteed to infer an isometric representation, disentangling the agent from the object and correctly extracting their locations. We evaluate empirically our framework on a variety of scenarios, showing that it outperforms vision-based approaches such as a state-of-the-art keypoint extractor. We moreover demonstrate how the extracted representations enable the agent to solve downstream tasks via reinforcement learning in an efficient manner.
{\em Algorithms with predictions} incorporate machine learning predictions into algorithm design. A plethora of recent works incorporated predictions to improve on worst-case optimal bounds for online problems. In this paper, we initiate the study of complexity of dynamic data structures with predictions, including dynamic graph algorithms. Unlike in online algorithms, the main goal in dynamic data structures is to maintain the solution {\em efficiently} with every update. Motivated by work in online algorithms, we investigate three natural models of predictions: (1) $\varepsilon$-accurate predictions where each predicted request matches the true request with probability at least $\varepsilon$, (2) list-accurate predictions where a true request comes from a list of possible requests, and (3) bounded delay predictions where the true requests are some (unknown) permutations of the predicted requests. For $\varepsilon$-accurate predictions, we show that lower bounds from the non-prediction setting of a problem carry over, up to a $1-\varepsilon$ factor. Then we give general reductions among the prediction models for a problem, showing that lower bounds for bounded delay imply lower bounds for list-accurate predictions, which imply lower bounds for $\varepsilon$-accurate predictions. Further, we identify two broad problem classes based on lower bounds due to the Online Matrix Vector (OMv) conjecture. Specifically, we show that dynamic problems that are {\em locally correctable} have strong conditional lower bounds for list-accurate predictions that are equivalent to the non-prediction setting, unless list-accurate predictions are perfect. Moreover, dynamic problems that are {\em locally reducible} have a smooth transition in the running time. We categorize problems accordingly and give upper bounds that show that our lower bounds are almost tight, including problems in dynamic graphs.
Adversarial attacks expose vulnerabilities of deep learning models by introducing minor perturbations to the input, which lead to substantial alterations in the output. Our research focuses on the impact of such adversarial attacks on sequence-to-sequence (seq2seq) models, specifically machine translation models. We introduce algorithms that incorporate basic text perturbation heuristics and more advanced strategies, such as the gradient-based attack, which utilizes a differentiable approximation of the inherently non-differentiable translation metric. Through our investigation, we provide evidence that machine translation models display robustness displayed robustness against best performed known adversarial attacks, as the degree of perturbation in the output is directly proportional to the perturbation in the input. However, among underdogs, our attacks outperform alternatives, providing the best relative performance. Another strong candidate is an attack based on mixing of individual characters.
Inspired by the diversity of biological neurons, quadratic artificial neurons can play an important role in deep learning models. The type of quadratic neurons of our interest replaces the inner-product operation in the conventional neuron with a quadratic function. Despite promising results so far achieved by networks of quadratic neurons, there are important issues not well addressed. Theoretically, the superior expressivity of a quadratic network over either a conventional network or a conventional network via quadratic activation is not fully elucidated, which makes the use of quadratic networks not well grounded. Practically, although a quadratic network can be trained via generic backpropagation, it can be subject to a higher risk of collapse than the conventional counterpart. To address these issues, we first apply the spline theory and a measure from algebraic geometry to give two theorems that demonstrate better model expressivity of a quadratic network than the conventional counterpart with or without quadratic activation. Then, we propose an effective training strategy referred to as ReLinear to stabilize the training process of a quadratic network, thereby unleashing the full potential in its associated machine learning tasks. Comprehensive experiments on popular datasets are performed to support our findings and confirm the performance of quadratic deep learning. We have shared our code in \url{//github.com/FengleiFan/ReLinear}.
We study the complexity of the problem of verifying differential privacy for while-like programs working over boolean values and making probabilistic choices. Programs in this class can be interpreted into finite-state discrete-time Markov Chains (DTMC). We show that the problem of deciding whether a program is differentially private for specific values of the privacy parameters is PSPACE-complete. To show that this problem is in PSPACE, we adapt classical results about computing hitting probabilities for DTMC. To show PSPACE-hardness we use a reduction from the problem of checking whether a program almost surely terminates or not. We also show that the problem of approximating the privacy parameters that a program provides is PSPACE-hard. Moreover, we investigate the complexity of similar problems also for several relaxations of differential privacy: R\'enyi differential privacy, concentrated differential privacy, and truncated concentrated differential privacy. For these notions, we consider gap-versions of the problem of deciding whether a program is private or not and we show that all of them are PSPACE-complete.
Predicting future outcomes is a prevalent application of machine learning in social impact domains. Examples range from predicting student success in education to predicting disease risk in healthcare. Practitioners recognize that the ultimate goal is not just to predict but to act effectively. Increasing evidence suggests that relying on outcome predictions for downstream interventions may not have desired results. In most domains there exists a multitude of possible interventions for each individual, making the challenge of taking effective action more acute. Even when causal mechanisms connecting the individual's latent states to outcomes is well understood, in any given instance (a specific student or patient), practitioners still need to infer -- from budgeted measurements of latent states -- which of many possible interventions will be most effective for this individual. With this in mind, we ask: when are accurate predictors of outcomes helpful for identifying the most suitable intervention? Through a simple model encompassing actions, latent states, and measurements, we demonstrate that pure outcome prediction rarely results in the most effective policy for taking actions, even when combined with other measurements. We find that except in cases where there is a single decisive action for improving the outcome, outcome prediction never maximizes "action value", the utility of taking actions. Making measurements of actionable latent states, where specific actions lead to desired outcomes, considerably enhances the action value compared to outcome prediction, and the degree of improvement depends on action costs and the outcome model. This analysis emphasizes the need to go beyond generic outcome prediction in interventional settings by incorporating knowledge of plausible actions and latent states.
Satellite Image Time Series (SITS) representation learning is complex due to high spatiotemporal resolutions, irregular acquisition times, and intricate spatiotemporal interactions. These challenges result in specialized neural network architectures tailored for SITS analysis. The field has witnessed promising results achieved by pioneering researchers, but transferring the latest advances or established paradigms from Computer Vision (CV) to SITS is still highly challenging due to the existing suboptimal representation learning framework. In this paper, we develop a novel perspective of SITS processing as a direct set prediction problem, inspired by the recent trend in adopting query-based transformer decoders to streamline the object detection or image segmentation pipeline. We further propose to decompose the representation learning process of SITS into three explicit steps: collect-update-distribute, which is computationally efficient and suits for irregularly-sampled and asynchronous temporal satellite observations. Facilitated by the unique reformulation, our proposed temporal learning backbone of SITS, initially pre-trained on the resource efficient pixel-set format and then fine-tuned on the downstream dense prediction tasks, has attained new state-of-the-art (SOTA) results on the PASTIS benchmark dataset. Specifically, the clear separation between temporal and spatial components in the semantic/panoptic segmentation pipeline of SITS makes us leverage the latest advances in CV, such as the universal image segmentation architecture, resulting in a noticeable 2.5 points increase in mIoU and 8.8 points increase in PQ, respectively, compared to the best scores reported so far.
While deep reinforcement learning (RL) has fueled multiple high-profile successes in machine learning, it is held back from more widespread adoption by its often poor data efficiency and the limited generality of the policies it produces. A promising approach for alleviating these limitations is to cast the development of better RL algorithms as a machine learning problem itself in a process called meta-RL. Meta-RL is most commonly studied in a problem setting where, given a distribution of tasks, the goal is to learn a policy that is capable of adapting to any new task from the task distribution with as little data as possible. In this survey, we describe the meta-RL problem setting in detail as well as its major variations. We discuss how, at a high level, meta-RL research can be clustered based on the presence of a task distribution and the learning budget available for each individual task. Using these clusters, we then survey meta-RL algorithms and applications. We conclude by presenting the open problems on the path to making meta-RL part of the standard toolbox for a deep RL practitioner.
AI is undergoing a paradigm shift with the rise of models (e.g., BERT, DALL-E, GPT-3) that are trained on broad data at scale and are adaptable to a wide range of downstream tasks. We call these models foundation models to underscore their critically central yet incomplete character. This report provides a thorough account of the opportunities and risks of foundation models, ranging from their capabilities (e.g., language, vision, robotics, reasoning, human interaction) and technical principles(e.g., model architectures, training procedures, data, systems, security, evaluation, theory) to their applications (e.g., law, healthcare, education) and societal impact (e.g., inequity, misuse, economic and environmental impact, legal and ethical considerations). Though foundation models are based on standard deep learning and transfer learning, their scale results in new emergent capabilities,and their effectiveness across so many tasks incentivizes homogenization. Homogenization provides powerful leverage but demands caution, as the defects of the foundation model are inherited by all the adapted models downstream. Despite the impending widespread deployment of foundation models, we currently lack a clear understanding of how they work, when they fail, and what they are even capable of due to their emergent properties. To tackle these questions, we believe much of the critical research on foundation models will require deep interdisciplinary collaboration commensurate with their fundamentally sociotechnical nature.